vwxyzjn commited on
Commit
546e478
1 Parent(s): b28cb28

pushing model

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ dqn_atari_jax.cleanrl_model filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - PongNoFrameskip-v4
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - custom-implementation
7
+ library_name: cleanrl
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PongNoFrameskip-v4
16
+ type: PongNoFrameskip-v4
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 19.70 +/- 1.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # (CleanRL) **DQN** Agent Playing **PongNoFrameskip-v4**
25
+
26
+ This is a trained model of a DQN agent playing PongNoFrameskip-v4.
27
+ The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
28
+ found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari_jax.py).
29
+
30
+ ## Command to reproduce the training
31
+
32
+ ```bash
33
+ curl -OL https://huggingface.co/cleanrl/PongNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/dqn.py
34
+ curl -OL https://huggingface.co/cleanrl/PongNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/pyproject.toml
35
+ curl -OL https://huggingface.co/cleanrl/PongNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/poetry.lock
36
+ poetry install --all-extras
37
+ python dqn_atari_jax.py --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id PongNoFrameskip-v4 --seed 1
38
+ ```
39
+
40
+ # Hyperparameters
41
+ ```python
42
+ {'batch_size': 32,
43
+ 'buffer_size': 1000000,
44
+ 'capture_video': True,
45
+ 'end_e': 0.01,
46
+ 'env_id': 'PongNoFrameskip-v4',
47
+ 'exp_name': 'dqn_atari_jax',
48
+ 'exploration_fraction': 0.1,
49
+ 'gamma': 0.99,
50
+ 'hf_entity': 'cleanrl',
51
+ 'learning_rate': 0.0001,
52
+ 'learning_starts': 80000,
53
+ 'save_model': True,
54
+ 'seed': 1,
55
+ 'start_e': 1,
56
+ 'target_network_frequency': 1000,
57
+ 'total_timesteps': 10000000,
58
+ 'track': True,
59
+ 'train_frequency': 4,
60
+ 'upload_model': True,
61
+ 'wandb_entity': None,
62
+ 'wandb_project_name': 'cleanRL'}
63
+ ```
64
+
dqn_atari_jax.cleanrl_model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a1122b05132eedb37d8a4c1f25afc2cc50199d6c0c8f96f95af80f0ac8cb488
3
+ size 6749142
dqn_atari_jax.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/dqn/#dqn_atari_jaxpy
2
+ import argparse
3
+ import os
4
+ import random
5
+ import time
6
+ from distutils.util import strtobool
7
+
8
+ os.environ[
9
+ "XLA_PYTHON_CLIENT_MEM_FRACTION"
10
+ ] = "0.7" # see https://github.com/google/jax/discussions/6332#discussioncomment-1279991
11
+
12
+ import flax
13
+ import flax.linen as nn
14
+ import gym
15
+ import jax
16
+ import jax.numpy as jnp
17
+ import numpy as np
18
+ import optax
19
+ from flax.training.train_state import TrainState
20
+ from stable_baselines3.common.atari_wrappers import (
21
+ ClipRewardEnv,
22
+ EpisodicLifeEnv,
23
+ FireResetEnv,
24
+ MaxAndSkipEnv,
25
+ NoopResetEnv,
26
+ )
27
+ from stable_baselines3.common.buffers import ReplayBuffer
28
+ from torch.utils.tensorboard import SummaryWriter
29
+
30
+
31
+ def parse_args():
32
+ # fmt: off
33
+ parser = argparse.ArgumentParser()
34
+ parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
35
+ help="the name of this experiment")
36
+ parser.add_argument("--seed", type=int, default=1,
37
+ help="seed of the experiment")
38
+ parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
39
+ help="if toggled, this experiment will be tracked with Weights and Biases")
40
+ parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
41
+ help="the wandb's project name")
42
+ parser.add_argument("--wandb-entity", type=str, default=None,
43
+ help="the entity (team) of wandb's project")
44
+ parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
45
+ help="whether to capture videos of the agent performances (check out `videos` folder)")
46
+ parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
47
+ help="whether to save model into the `runs/{run_name}` folder")
48
+ parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
49
+ help="whether to upload the saved model to huggingface")
50
+ parser.add_argument("--hf-entity", type=str, default="",
51
+ help="the user or org name of the model repository from the Hugging Face Hub")
52
+
53
+ # Algorithm specific arguments
54
+ parser.add_argument("--env-id", type=str, default="BreakoutNoFrameskip-v4",
55
+ help="the id of the environment")
56
+ parser.add_argument("--total-timesteps", type=int, default=10000000,
57
+ help="total timesteps of the experiments")
58
+ parser.add_argument("--learning-rate", type=float, default=1e-4,
59
+ help="the learning rate of the optimizer")
60
+ parser.add_argument("--buffer-size", type=int, default=1000000,
61
+ help="the replay memory buffer size")
62
+ parser.add_argument("--gamma", type=float, default=0.99,
63
+ help="the discount factor gamma")
64
+ parser.add_argument("--target-network-frequency", type=int, default=1000,
65
+ help="the timesteps it takes to update the target network")
66
+ parser.add_argument("--batch-size", type=int, default=32,
67
+ help="the batch size of sample from the reply memory")
68
+ parser.add_argument("--start-e", type=float, default=1,
69
+ help="the starting epsilon for exploration")
70
+ parser.add_argument("--end-e", type=float, default=0.01,
71
+ help="the ending epsilon for exploration")
72
+ parser.add_argument("--exploration-fraction", type=float, default=0.10,
73
+ help="the fraction of `total-timesteps` it takes from start-e to go end-e")
74
+ parser.add_argument("--learning-starts", type=int, default=80000,
75
+ help="timestep to start learning")
76
+ parser.add_argument("--train-frequency", type=int, default=4,
77
+ help="the frequency of training")
78
+ args = parser.parse_args()
79
+ # fmt: on
80
+ return args
81
+
82
+
83
+ def make_env(env_id, seed, idx, capture_video, run_name):
84
+ def thunk():
85
+ env = gym.make(env_id)
86
+ env = gym.wrappers.RecordEpisodeStatistics(env)
87
+ if capture_video:
88
+ if idx == 0:
89
+ env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
90
+ env = NoopResetEnv(env, noop_max=30)
91
+ env = MaxAndSkipEnv(env, skip=4)
92
+ env = EpisodicLifeEnv(env)
93
+ if "FIRE" in env.unwrapped.get_action_meanings():
94
+ env = FireResetEnv(env)
95
+ env = ClipRewardEnv(env)
96
+ env = gym.wrappers.ResizeObservation(env, (84, 84))
97
+ env = gym.wrappers.GrayScaleObservation(env)
98
+ env = gym.wrappers.FrameStack(env, 4)
99
+ env.seed(seed)
100
+ env.action_space.seed(seed)
101
+ env.observation_space.seed(seed)
102
+ return env
103
+
104
+ return thunk
105
+
106
+
107
+ # ALGO LOGIC: initialize agent here:
108
+ class QNetwork(nn.Module):
109
+ action_dim: int
110
+
111
+ @nn.compact
112
+ def __call__(self, x):
113
+ x = jnp.transpose(x, (0, 2, 3, 1))
114
+ x = x / (255.0)
115
+ x = nn.Conv(32, kernel_size=(8, 8), strides=(4, 4), padding="VALID")(x)
116
+ x = nn.relu(x)
117
+ x = nn.Conv(64, kernel_size=(4, 4), strides=(2, 2), padding="VALID")(x)
118
+ x = nn.relu(x)
119
+ x = nn.Conv(64, kernel_size=(3, 3), strides=(1, 1), padding="VALID")(x)
120
+ x = nn.relu(x)
121
+ x = x.reshape((x.shape[0], -1))
122
+ x = nn.Dense(512)(x)
123
+ x = nn.relu(x)
124
+ x = nn.Dense(self.action_dim)(x)
125
+ return x
126
+
127
+
128
+ class TrainState(TrainState):
129
+ target_params: flax.core.FrozenDict
130
+
131
+
132
+ def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
133
+ slope = (end_e - start_e) / duration
134
+ return max(slope * t + start_e, end_e)
135
+
136
+
137
+ if __name__ == "__main__":
138
+ args = parse_args()
139
+ run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
140
+ if args.track:
141
+ import wandb
142
+
143
+ wandb.init(
144
+ project=args.wandb_project_name,
145
+ entity=args.wandb_entity,
146
+ sync_tensorboard=True,
147
+ config=vars(args),
148
+ name=run_name,
149
+ monitor_gym=True,
150
+ save_code=True,
151
+ )
152
+ writer = SummaryWriter(f"runs/{run_name}")
153
+ writer.add_text(
154
+ "hyperparameters",
155
+ "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
156
+ )
157
+
158
+ # TRY NOT TO MODIFY: seeding
159
+ random.seed(args.seed)
160
+ np.random.seed(args.seed)
161
+ key = jax.random.PRNGKey(args.seed)
162
+ key, q_key = jax.random.split(key, 2)
163
+
164
+ # env setup
165
+ envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
166
+ assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
167
+
168
+ obs = envs.reset()
169
+
170
+ q_network = QNetwork(action_dim=envs.single_action_space.n)
171
+
172
+ q_state = TrainState.create(
173
+ apply_fn=q_network.apply,
174
+ params=q_network.init(q_key, obs),
175
+ target_params=q_network.init(q_key, obs),
176
+ tx=optax.adam(learning_rate=args.learning_rate),
177
+ )
178
+
179
+ q_network.apply = jax.jit(q_network.apply)
180
+ # This step is not necessary as init called on same observation and key will always lead to same initializations
181
+ q_state = q_state.replace(target_params=optax.incremental_update(q_state.params, q_state.target_params, 1))
182
+
183
+ rb = ReplayBuffer(
184
+ args.buffer_size,
185
+ envs.single_observation_space,
186
+ envs.single_action_space,
187
+ "cpu",
188
+ optimize_memory_usage=True,
189
+ handle_timeout_termination=True,
190
+ )
191
+
192
+ @jax.jit
193
+ def update(q_state, observations, actions, next_observations, rewards, dones):
194
+ q_next_target = q_network.apply(q_state.target_params, next_observations) # (batch_size, num_actions)
195
+ q_next_target = jnp.max(q_next_target, axis=-1) # (batch_size,)
196
+ next_q_value = rewards + (1 - dones) * args.gamma * q_next_target
197
+
198
+ def mse_loss(params):
199
+ q_pred = q_network.apply(params, observations) # (batch_size, num_actions)
200
+ q_pred = q_pred[np.arange(q_pred.shape[0]), actions.squeeze()] # (batch_size,)
201
+ return ((q_pred - next_q_value) ** 2).mean(), q_pred
202
+
203
+ (loss_value, q_pred), grads = jax.value_and_grad(mse_loss, has_aux=True)(q_state.params)
204
+ q_state = q_state.apply_gradients(grads=grads)
205
+ return loss_value, q_pred, q_state
206
+
207
+ start_time = time.time()
208
+
209
+ # TRY NOT TO MODIFY: start the game
210
+ obs = envs.reset()
211
+ for global_step in range(args.total_timesteps):
212
+ # ALGO LOGIC: put action logic here
213
+ epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step)
214
+ if random.random() < epsilon:
215
+ actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
216
+ else:
217
+ q_values = q_network.apply(q_state.params, obs)
218
+ actions = q_values.argmax(axis=-1)
219
+ actions = jax.device_get(actions)
220
+
221
+ # TRY NOT TO MODIFY: execute the game and log data.
222
+ next_obs, rewards, dones, infos = envs.step(actions)
223
+
224
+ # TRY NOT TO MODIFY: record rewards for plotting purposes
225
+ for info in infos:
226
+ if "episode" in info.keys():
227
+ print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
228
+ writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
229
+ writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
230
+ writer.add_scalar("charts/epsilon", epsilon, global_step)
231
+ break
232
+
233
+ # TRY NOT TO MODIFY: save data to reply buffer; handle `terminal_observation`
234
+ real_next_obs = next_obs.copy()
235
+ for idx, d in enumerate(dones):
236
+ if d:
237
+ real_next_obs[idx] = infos[idx]["terminal_observation"]
238
+ rb.add(obs, real_next_obs, actions, rewards, dones, infos)
239
+
240
+ # TRY NOT TO MODIFY: CRUCIAL step easy to overlook
241
+ obs = next_obs
242
+
243
+ # ALGO LOGIC: training.
244
+ if global_step > args.learning_starts:
245
+ if global_step % args.train_frequency == 0:
246
+ data = rb.sample(args.batch_size)
247
+ # perform a gradient-descent step
248
+ loss, old_val, q_state = update(
249
+ q_state,
250
+ data.observations.numpy(),
251
+ data.actions.numpy(),
252
+ data.next_observations.numpy(),
253
+ data.rewards.flatten().numpy(),
254
+ data.dones.flatten().numpy(),
255
+ )
256
+
257
+ if global_step % 100 == 0:
258
+ writer.add_scalar("losses/td_loss", jax.device_get(loss), global_step)
259
+ writer.add_scalar("losses/q_values", jax.device_get(old_val).mean(), global_step)
260
+ print("SPS:", int(global_step / (time.time() - start_time)))
261
+ writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
262
+
263
+ # update the target network
264
+ if global_step % args.target_network_frequency == 0:
265
+ q_state = q_state.replace(target_params=optax.incremental_update(q_state.params, q_state.target_params, 1))
266
+
267
+ if args.save_model:
268
+ model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
269
+ with open(model_path, "wb") as f:
270
+ f.write(flax.serialization.to_bytes(q_state.params))
271
+ print(f"model saved to {model_path}")
272
+ from cleanrl_utils.evals.dqn_jax_eval import evaluate
273
+
274
+ episodic_returns = evaluate(
275
+ model_path,
276
+ make_env,
277
+ args.env_id,
278
+ eval_episodes=10,
279
+ run_name=f"{run_name}-eval",
280
+ Model=QNetwork,
281
+ epsilon=0.05,
282
+ )
283
+ for idx, episodic_return in enumerate(episodic_returns):
284
+ writer.add_scalar("eval/episodic_return", episodic_return, idx)
285
+
286
+ if args.upload_model:
287
+ from cleanrl_utils.huggingface import push_to_hub
288
+
289
+ repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
290
+ repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
291
+ push_to_hub(args, episodic_returns, repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval")
292
+
293
+ envs.close()
294
+ writer.close()
events.out.tfevents.1671117314.pop-os.1429096.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d114b084abbfdd18647ba7d43f15245a39d0ec01256423fb226f6545590b761d
3
+ size 17028283
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "cleanrl-test"
3
+ version = "1.1.0"
4
+ description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features"
5
+ authors = ["Costa Huang <[email protected]>"]
6
+ packages = [
7
+ { include = "cleanrl" },
8
+ { include = "cleanrl_utils" },
9
+ ]
10
+ keywords = ["reinforcement", "machine", "learning", "research"]
11
+ license="MIT"
12
+ readme = "README.md"
13
+
14
+ [tool.poetry.dependencies]
15
+ python = ">=3.7.1,<3.10"
16
+ tensorboard = "^2.10.0"
17
+ wandb = "^0.13.6"
18
+ gym = "0.23.1"
19
+ torch = ">=1.12.1"
20
+ stable-baselines3 = "1.2.0"
21
+ gymnasium = "^0.26.3"
22
+ moviepy = "^1.0.3"
23
+ pygame = "2.1.0"
24
+ huggingface-hub = "^0.11.1"
25
+
26
+ ale-py = {version = "0.7.4", optional = true}
27
+ AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
28
+ opencv-python = {version = "^4.6.0.66", optional = true}
29
+ pybullet = {version = "3.1.8", optional = true}
30
+ procgen = {version = "^0.10.7", optional = true}
31
+ pytest = {version = "^7.1.3", optional = true}
32
+ mujoco = {version = "^2.2", optional = true}
33
+ imageio = {version = "^2.14.1", optional = true}
34
+ free-mujoco-py = {version = "^2.1.6", optional = true}
35
+ mkdocs-material = {version = "^8.4.3", optional = true}
36
+ markdown-include = {version = "^0.7.0", optional = true}
37
+ jax = {version = "^0.3.17", optional = true}
38
+ jaxlib = {version = "^0.3.15", optional = true}
39
+ flax = {version = "^0.6.0", optional = true}
40
+ optuna = {version = "^3.0.1", optional = true}
41
+ optuna-dashboard = {version = "^0.7.2", optional = true}
42
+ rich = {version = "<12.0", optional = true}
43
+ envpool = {version = "^0.6.4", optional = true}
44
+ PettingZoo = {version = "1.18.1", optional = true}
45
+ SuperSuit = {version = "3.4.0", optional = true}
46
+ multi-agent-ale-py = {version = "0.1.11", optional = true}
47
+ boto3 = {version = "^1.24.70", optional = true}
48
+ awscli = {version = "^1.25.71", optional = true}
49
+ shimmy = {version = "^0.1.0", optional = true}
50
+ dm-control = {version = "^1.0.8", optional = true}
51
+
52
+ [tool.poetry.group.dev.dependencies]
53
+ pre-commit = "^2.20.0"
54
+
55
+ [tool.poetry.group.atari]
56
+ optional = true
57
+ [tool.poetry.group.atari.dependencies]
58
+ ale-py = "0.7.4"
59
+ AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2"}
60
+ opencv-python = "^4.6.0.66"
61
+
62
+ [tool.poetry.group.pybullet]
63
+ optional = true
64
+ [tool.poetry.group.pybullet.dependencies]
65
+ pybullet = "3.1.8"
66
+
67
+ [tool.poetry.group.procgen]
68
+ optional = true
69
+ [tool.poetry.group.procgen.dependencies]
70
+ procgen = "^0.10.7"
71
+
72
+ [tool.poetry.group.pytest]
73
+ optional = true
74
+ [tool.poetry.group.pytest.dependencies]
75
+ pytest = "^7.1.3"
76
+
77
+ [tool.poetry.group.mujoco]
78
+ optional = true
79
+ [tool.poetry.group.mujoco.dependencies]
80
+ mujoco = "^2.2"
81
+ imageio = "^2.14.1"
82
+
83
+ [tool.poetry.group.mujoco_py]
84
+ optional = true
85
+ [tool.poetry.group.mujoco_py.dependencies]
86
+ free-mujoco-py = "^2.1.6"
87
+
88
+ [tool.poetry.group.docs]
89
+ optional = true
90
+ [tool.poetry.group.docs.dependencies]
91
+ mkdocs-material = "^8.4.3"
92
+ markdown-include = "^0.7.0"
93
+
94
+ [tool.poetry.group.jax]
95
+ optional = true
96
+ [tool.poetry.group.jax.dependencies]
97
+ jax = "^0.3.17"
98
+ jaxlib = "^0.3.15"
99
+ flax = "^0.6.0"
100
+
101
+ [tool.poetry.group.optuna]
102
+ optional = true
103
+ [tool.poetry.group.optuna.dependencies]
104
+ optuna = "^3.0.1"
105
+ optuna-dashboard = "^0.7.2"
106
+ rich = "<12.0"
107
+
108
+ [tool.poetry.group.envpool]
109
+ optional = true
110
+ [tool.poetry.group.envpool.dependencies]
111
+ envpool = "^0.6.4"
112
+
113
+ [tool.poetry.group.pettingzoo]
114
+ optional = true
115
+ [tool.poetry.group.pettingzoo.dependencies]
116
+ PettingZoo = "1.18.1"
117
+ SuperSuit = "3.4.0"
118
+ multi-agent-ale-py = "0.1.11"
119
+
120
+ [tool.poetry.group.cloud]
121
+ optional = true
122
+ [tool.poetry.group.cloud.dependencies]
123
+ boto3 = "^1.24.70"
124
+ awscli = "^1.25.71"
125
+
126
+ [tool.poetry.group.isaacgym]
127
+ optional = true
128
+ [tool.poetry.group.isaacgym.dependencies]
129
+ isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry"}
130
+ isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
131
+
132
+ [tool.poetry.group.dm_control]
133
+ optional = true
134
+ [tool.poetry.group.dm_control.dependencies]
135
+ shimmy = "^0.1.0"
136
+ dm-control = "^1.0.8"
137
+ mujoco = "^2.2"
138
+
139
+ [build-system]
140
+ requires = ["poetry-core"]
141
+ build-backend = "poetry.core.masonry.api"
142
+
143
+ [tool.poetry.extras]
144
+ atari = ["ale-py", "AutoROM", "opencv-python"]
145
+ pybullet = ["pybullet"]
146
+ procgen = ["procgen"]
147
+ plot = ["pandas", "seaborn"]
148
+ spyder = ["spyder"]
149
+ pytest = ["pytest"]
150
+ mujoco = ["mujoco", "imageio"]
151
+ mujoco_py = ["free-mujoco-py"]
152
+ jax = ["jax", "jaxlib", "flax"]
153
+ docs = ["mkdocs-material", "markdown-include"]
154
+ envpool = ["envpool"]
155
+ optuna = ["optuna", "optuna-dashboard", "rich"]
156
+ pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
157
+ cloud = ["boto3", "awscli"]
158
+ dm_control = ["shimmy", "dm-control", "mujoco"]
replay.mp4 ADDED
Binary file (317 kB). View file
 
videos/PongNoFrameskip-v4__dqn_atari_jax__1__1671117313-eval/rl-video-episode-0.mp4 ADDED
Binary file (301 kB). View file
 
videos/PongNoFrameskip-v4__dqn_atari_jax__1__1671117313-eval/rl-video-episode-1.mp4 ADDED
Binary file (345 kB). View file
 
videos/PongNoFrameskip-v4__dqn_atari_jax__1__1671117313-eval/rl-video-episode-8.mp4 ADDED
Binary file (317 kB). View file