cilorku commited on
Commit
08a953a
·
verified ·
1 Parent(s): 8ce0ae8

Training in progress, step 300, checkpoint

Browse files
last-checkpoint/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
last-checkpoint/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Qwen2.5-Coder-1.5B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.04,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "gate_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
last-checkpoint/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e228b17a73bc3f81947c086347fce87ac063d7350d4c76e1f3155aca666ddba5
3
+ size 295488936
last-checkpoint/added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|PAD_TOKEN|>": 151665,
5
+ "<|box_end|>": 151649,
6
+ "<|box_start|>": 151648,
7
+ "<|endoftext|>": 151643,
8
+ "<|file_sep|>": 151664,
9
+ "<|fim_middle|>": 151660,
10
+ "<|fim_pad|>": 151662,
11
+ "<|fim_prefix|>": 151659,
12
+ "<|fim_suffix|>": 151661,
13
+ "<|im_end|>": 151645,
14
+ "<|im_start|>": 151644,
15
+ "<|image_pad|>": 151655,
16
+ "<|object_ref_end|>": 151647,
17
+ "<|object_ref_start|>": 151646,
18
+ "<|quad_end|>": 151651,
19
+ "<|quad_start|>": 151650,
20
+ "<|repo_name|>": 151663,
21
+ "<|video_pad|>": 151656,
22
+ "<|vision_end|>": 151653,
23
+ "<|vision_pad|>": 151654,
24
+ "<|vision_start|>": 151652
25
+ }
last-checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:484b5ff183c7d02282937a1fb0b6a0beb0819da03c3b077a457d1db88a133e6f
3
+ size 150487412
last-checkpoint/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aa4de7450a948b9728f964c952892496ba1ad747b45f21e3f4394cdc4b34487
3
+ size 14244
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97217b203f1ec36d5ff0b43e1fbe7c384792a66d6e8afc16c5c4e545b12b1358
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|PAD_TOKEN|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
last-checkpoint/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fab42efe8d17406525a9154b728cf9e957629a8ed7ce997770efdd71128c6a1a
3
+ size 11422086
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|PAD_TOKEN|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<|im_start|>",
192
+ "<|im_end|>",
193
+ "<|object_ref_start|>",
194
+ "<|object_ref_end|>",
195
+ "<|box_start|>",
196
+ "<|box_end|>",
197
+ "<|quad_start|>",
198
+ "<|quad_end|>",
199
+ "<|vision_start|>",
200
+ "<|vision_end|>",
201
+ "<|vision_pad|>",
202
+ "<|image_pad|>",
203
+ "<|video_pad|>"
204
+ ],
205
+ "bos_token": null,
206
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
207
+ "clean_up_tokenization_spaces": false,
208
+ "eos_token": "<|im_end|>",
209
+ "errors": "replace",
210
+ "model_max_length": 131072,
211
+ "pad_token": "<|PAD_TOKEN|>",
212
+ "padding_side": "left",
213
+ "split_special_tokens": false,
214
+ "tokenizer_class": "Qwen2Tokenizer",
215
+ "unk_token": null
216
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,2166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8408719301223755,
3
+ "best_model_checkpoint": "miner_id_24/checkpoint-300",
4
+ "epoch": 0.3018867924528302,
5
+ "eval_steps": 150,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0010062893081761006,
13
+ "grad_norm": 0.34507399797439575,
14
+ "learning_rate": 3.0000000000000004e-07,
15
+ "loss": 0.6716,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0010062893081761006,
20
+ "eval_loss": 1.1011072397232056,
21
+ "eval_runtime": 72.3489,
22
+ "eval_samples_per_second": 46.262,
23
+ "eval_steps_per_second": 11.569,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.002012578616352201,
28
+ "grad_norm": 0.310740202665329,
29
+ "learning_rate": 6.000000000000001e-07,
30
+ "loss": 0.6763,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.0030188679245283017,
35
+ "grad_norm": 0.33329853415489197,
36
+ "learning_rate": 9.000000000000001e-07,
37
+ "loss": 0.7372,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.004025157232704402,
42
+ "grad_norm": 0.3545615077018738,
43
+ "learning_rate": 1.2000000000000002e-06,
44
+ "loss": 0.7506,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.005031446540880503,
49
+ "grad_norm": 0.3150895833969116,
50
+ "learning_rate": 1.5e-06,
51
+ "loss": 0.7077,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.0060377358490566035,
56
+ "grad_norm": 0.2971160113811493,
57
+ "learning_rate": 1.8000000000000001e-06,
58
+ "loss": 0.7474,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.007044025157232704,
63
+ "grad_norm": 0.3241315186023712,
64
+ "learning_rate": 2.1000000000000002e-06,
65
+ "loss": 0.7257,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.008050314465408805,
70
+ "grad_norm": 0.3870707154273987,
71
+ "learning_rate": 2.4000000000000003e-06,
72
+ "loss": 0.8577,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.009056603773584906,
77
+ "grad_norm": 0.42336294054985046,
78
+ "learning_rate": 2.7e-06,
79
+ "loss": 0.9492,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.010062893081761006,
84
+ "grad_norm": 0.3823484778404236,
85
+ "learning_rate": 3e-06,
86
+ "loss": 0.9361,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.011069182389937107,
91
+ "grad_norm": 0.39906373620033264,
92
+ "learning_rate": 3.3e-06,
93
+ "loss": 0.8811,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.012075471698113207,
98
+ "grad_norm": 0.4224358797073364,
99
+ "learning_rate": 3.6000000000000003e-06,
100
+ "loss": 0.9665,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.013081761006289308,
105
+ "grad_norm": 0.3891141712665558,
106
+ "learning_rate": 3.900000000000001e-06,
107
+ "loss": 0.9568,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.014088050314465408,
112
+ "grad_norm": 0.44890257716178894,
113
+ "learning_rate": 4.2000000000000004e-06,
114
+ "loss": 0.9954,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.01509433962264151,
119
+ "grad_norm": 0.3897688388824463,
120
+ "learning_rate": 4.5e-06,
121
+ "loss": 0.9744,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.01610062893081761,
126
+ "grad_norm": 0.3893052041530609,
127
+ "learning_rate": 4.800000000000001e-06,
128
+ "loss": 0.9226,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.01710691823899371,
133
+ "grad_norm": 0.4676080346107483,
134
+ "learning_rate": 5.1e-06,
135
+ "loss": 1.0271,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.018113207547169812,
140
+ "grad_norm": 0.4254531264305115,
141
+ "learning_rate": 5.4e-06,
142
+ "loss": 0.9791,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.019119496855345912,
147
+ "grad_norm": 0.4190981984138489,
148
+ "learning_rate": 5.7000000000000005e-06,
149
+ "loss": 1.011,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.02012578616352201,
154
+ "grad_norm": 0.3880650997161865,
155
+ "learning_rate": 6e-06,
156
+ "loss": 1.0195,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.021132075471698115,
161
+ "grad_norm": 0.385028213262558,
162
+ "learning_rate": 6.300000000000001e-06,
163
+ "loss": 1.05,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.022138364779874214,
168
+ "grad_norm": 0.3784335255622864,
169
+ "learning_rate": 6.6e-06,
170
+ "loss": 1.0114,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.023144654088050314,
175
+ "grad_norm": 0.37113457918167114,
176
+ "learning_rate": 6.9e-06,
177
+ "loss": 1.0068,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.024150943396226414,
182
+ "grad_norm": 0.40349870920181274,
183
+ "learning_rate": 7.2000000000000005e-06,
184
+ "loss": 1.0286,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.025157232704402517,
189
+ "grad_norm": 0.3880467712879181,
190
+ "learning_rate": 7.5e-06,
191
+ "loss": 1.0293,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.026163522012578617,
196
+ "grad_norm": 0.4099384546279907,
197
+ "learning_rate": 7.800000000000002e-06,
198
+ "loss": 1.0203,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.027169811320754716,
203
+ "grad_norm": 0.4069879651069641,
204
+ "learning_rate": 8.1e-06,
205
+ "loss": 0.9713,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.028176100628930816,
210
+ "grad_norm": 0.4327114522457123,
211
+ "learning_rate": 8.400000000000001e-06,
212
+ "loss": 1.0237,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.02918238993710692,
217
+ "grad_norm": 0.4324794411659241,
218
+ "learning_rate": 8.7e-06,
219
+ "loss": 0.9488,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.03018867924528302,
224
+ "grad_norm": 0.46345117688179016,
225
+ "learning_rate": 9e-06,
226
+ "loss": 1.0397,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.03119496855345912,
231
+ "grad_norm": 0.4823172688484192,
232
+ "learning_rate": 9.3e-06,
233
+ "loss": 0.9933,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.03220125786163522,
238
+ "grad_norm": 0.4677373170852661,
239
+ "learning_rate": 9.600000000000001e-06,
240
+ "loss": 1.0105,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.03320754716981132,
245
+ "grad_norm": 0.48578086495399475,
246
+ "learning_rate": 9.9e-06,
247
+ "loss": 1.0846,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.03421383647798742,
252
+ "grad_norm": 0.5035053491592407,
253
+ "learning_rate": 1.02e-05,
254
+ "loss": 1.0945,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.03522012578616352,
259
+ "grad_norm": 0.520107090473175,
260
+ "learning_rate": 1.0500000000000001e-05,
261
+ "loss": 1.0162,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.036226415094339624,
266
+ "grad_norm": 0.5222728848457336,
267
+ "learning_rate": 1.08e-05,
268
+ "loss": 0.9715,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.03723270440251572,
273
+ "grad_norm": 0.5960727334022522,
274
+ "learning_rate": 1.11e-05,
275
+ "loss": 1.165,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.038238993710691824,
280
+ "grad_norm": 0.5684401392936707,
281
+ "learning_rate": 1.1400000000000001e-05,
282
+ "loss": 1.1352,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.03924528301886793,
287
+ "grad_norm": 0.6207726001739502,
288
+ "learning_rate": 1.1700000000000001e-05,
289
+ "loss": 1.066,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.04025157232704402,
294
+ "grad_norm": 0.6263030171394348,
295
+ "learning_rate": 1.2e-05,
296
+ "loss": 1.1443,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.041257861635220126,
301
+ "grad_norm": 0.5903211832046509,
302
+ "learning_rate": 1.23e-05,
303
+ "loss": 1.1045,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.04226415094339623,
308
+ "grad_norm": 0.6511650085449219,
309
+ "learning_rate": 1.2600000000000001e-05,
310
+ "loss": 1.049,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.043270440251572326,
315
+ "grad_norm": 0.7136890292167664,
316
+ "learning_rate": 1.2900000000000002e-05,
317
+ "loss": 1.2288,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.04427672955974843,
322
+ "grad_norm": 0.7521870732307434,
323
+ "learning_rate": 1.32e-05,
324
+ "loss": 1.2577,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.045283018867924525,
329
+ "grad_norm": 0.7466375827789307,
330
+ "learning_rate": 1.3500000000000001e-05,
331
+ "loss": 1.2349,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.04628930817610063,
336
+ "grad_norm": 0.845863401889801,
337
+ "learning_rate": 1.38e-05,
338
+ "loss": 1.3065,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.04729559748427673,
343
+ "grad_norm": 0.945936381816864,
344
+ "learning_rate": 1.4100000000000002e-05,
345
+ "loss": 1.4172,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.04830188679245283,
350
+ "grad_norm": 0.979352593421936,
351
+ "learning_rate": 1.4400000000000001e-05,
352
+ "loss": 1.2013,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.04930817610062893,
357
+ "grad_norm": 1.2940466403961182,
358
+ "learning_rate": 1.47e-05,
359
+ "loss": 1.2903,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.050314465408805034,
364
+ "grad_norm": 2.658918857574463,
365
+ "learning_rate": 1.5e-05,
366
+ "loss": 1.4156,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.05132075471698113,
371
+ "grad_norm": 0.3177829682826996,
372
+ "learning_rate": 1.5300000000000003e-05,
373
+ "loss": 0.7362,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.052327044025157234,
378
+ "grad_norm": 0.25816917419433594,
379
+ "learning_rate": 1.5600000000000003e-05,
380
+ "loss": 0.5831,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.05333333333333334,
385
+ "grad_norm": 0.2627386748790741,
386
+ "learning_rate": 1.59e-05,
387
+ "loss": 0.5988,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.05433962264150943,
392
+ "grad_norm": 0.2952287793159485,
393
+ "learning_rate": 1.62e-05,
394
+ "loss": 0.6925,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.055345911949685536,
399
+ "grad_norm": 0.330160915851593,
400
+ "learning_rate": 1.65e-05,
401
+ "loss": 0.7455,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.05635220125786163,
406
+ "grad_norm": 0.3190469443798065,
407
+ "learning_rate": 1.6800000000000002e-05,
408
+ "loss": 0.7658,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.057358490566037736,
413
+ "grad_norm": 0.3036893308162689,
414
+ "learning_rate": 1.7100000000000002e-05,
415
+ "loss": 0.7393,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.05836477987421384,
420
+ "grad_norm": 0.31386005878448486,
421
+ "learning_rate": 1.74e-05,
422
+ "loss": 0.7351,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.059371069182389935,
427
+ "grad_norm": 0.36971819400787354,
428
+ "learning_rate": 1.77e-05,
429
+ "loss": 0.8898,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.06037735849056604,
434
+ "grad_norm": 0.36234527826309204,
435
+ "learning_rate": 1.8e-05,
436
+ "loss": 0.8539,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.06138364779874214,
441
+ "grad_norm": 0.2921310365200043,
442
+ "learning_rate": 1.83e-05,
443
+ "loss": 0.7897,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.06238993710691824,
448
+ "grad_norm": 0.3270234763622284,
449
+ "learning_rate": 1.86e-05,
450
+ "loss": 0.872,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.06339622641509433,
455
+ "grad_norm": 0.31730490922927856,
456
+ "learning_rate": 1.8900000000000002e-05,
457
+ "loss": 0.8473,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.06440251572327044,
462
+ "grad_norm": 0.3125281035900116,
463
+ "learning_rate": 1.9200000000000003e-05,
464
+ "loss": 0.8964,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.06540880503144654,
469
+ "grad_norm": 0.3257617652416229,
470
+ "learning_rate": 1.9500000000000003e-05,
471
+ "loss": 0.9189,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.06641509433962264,
476
+ "grad_norm": 0.3161460757255554,
477
+ "learning_rate": 1.98e-05,
478
+ "loss": 0.8713,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.06742138364779875,
483
+ "grad_norm": 0.31015118956565857,
484
+ "learning_rate": 2.01e-05,
485
+ "loss": 0.8749,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.06842767295597484,
490
+ "grad_norm": 0.32371950149536133,
491
+ "learning_rate": 2.04e-05,
492
+ "loss": 0.8607,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.06943396226415094,
497
+ "grad_norm": 0.31971532106399536,
498
+ "learning_rate": 2.0700000000000002e-05,
499
+ "loss": 0.9075,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.07044025157232704,
504
+ "grad_norm": 0.3293505907058716,
505
+ "learning_rate": 2.1000000000000002e-05,
506
+ "loss": 0.8704,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.07144654088050315,
511
+ "grad_norm": 0.3107757866382599,
512
+ "learning_rate": 2.1300000000000003e-05,
513
+ "loss": 0.9121,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.07245283018867925,
518
+ "grad_norm": 0.3114102780818939,
519
+ "learning_rate": 2.16e-05,
520
+ "loss": 0.8762,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.07345911949685535,
525
+ "grad_norm": 0.34217050671577454,
526
+ "learning_rate": 2.1900000000000004e-05,
527
+ "loss": 0.8136,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.07446540880503144,
532
+ "grad_norm": 0.34302064776420593,
533
+ "learning_rate": 2.22e-05,
534
+ "loss": 0.9353,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.07547169811320754,
539
+ "grad_norm": 0.3483302891254425,
540
+ "learning_rate": 2.25e-05,
541
+ "loss": 0.9131,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.07647798742138365,
546
+ "grad_norm": 0.3389265537261963,
547
+ "learning_rate": 2.2800000000000002e-05,
548
+ "loss": 0.8294,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.07748427672955975,
553
+ "grad_norm": 0.3670293390750885,
554
+ "learning_rate": 2.31e-05,
555
+ "loss": 0.9307,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.07849056603773585,
560
+ "grad_norm": 0.3749659061431885,
561
+ "learning_rate": 2.3400000000000003e-05,
562
+ "loss": 0.974,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.07949685534591194,
567
+ "grad_norm": 0.40262284874916077,
568
+ "learning_rate": 2.37e-05,
569
+ "loss": 0.864,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.08050314465408805,
574
+ "grad_norm": 0.40775737166404724,
575
+ "learning_rate": 2.4e-05,
576
+ "loss": 0.9825,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.08150943396226415,
581
+ "grad_norm": 0.43855974078178406,
582
+ "learning_rate": 2.4300000000000005e-05,
583
+ "loss": 1.0478,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.08251572327044025,
588
+ "grad_norm": 0.43877044320106506,
589
+ "learning_rate": 2.46e-05,
590
+ "loss": 0.9031,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.08352201257861636,
595
+ "grad_norm": 0.43200093507766724,
596
+ "learning_rate": 2.4900000000000002e-05,
597
+ "loss": 0.8508,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.08452830188679246,
602
+ "grad_norm": 0.4515688717365265,
603
+ "learning_rate": 2.5200000000000003e-05,
604
+ "loss": 1.043,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.08553459119496855,
609
+ "grad_norm": 0.48888376355171204,
610
+ "learning_rate": 2.55e-05,
611
+ "loss": 0.9322,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.08654088050314465,
616
+ "grad_norm": 0.5086196064949036,
617
+ "learning_rate": 2.5800000000000004e-05,
618
+ "loss": 0.9251,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.08754716981132075,
623
+ "grad_norm": 0.5476843118667603,
624
+ "learning_rate": 2.61e-05,
625
+ "loss": 0.9828,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.08855345911949686,
630
+ "grad_norm": 0.5471930503845215,
631
+ "learning_rate": 2.64e-05,
632
+ "loss": 1.0144,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.08955974842767296,
637
+ "grad_norm": 0.49611005187034607,
638
+ "learning_rate": 2.6700000000000005e-05,
639
+ "loss": 0.8959,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.09056603773584905,
644
+ "grad_norm": 0.5451375842094421,
645
+ "learning_rate": 2.7000000000000002e-05,
646
+ "loss": 0.9002,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.09157232704402515,
651
+ "grad_norm": 0.604302704334259,
652
+ "learning_rate": 2.7300000000000003e-05,
653
+ "loss": 0.9707,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.09257861635220126,
658
+ "grad_norm": 0.6355348825454712,
659
+ "learning_rate": 2.76e-05,
660
+ "loss": 1.0894,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.09358490566037736,
665
+ "grad_norm": 0.6959015130996704,
666
+ "learning_rate": 2.79e-05,
667
+ "loss": 1.1298,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.09459119496855346,
672
+ "grad_norm": 0.7101635932922363,
673
+ "learning_rate": 2.8200000000000004e-05,
674
+ "loss": 1.0116,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.09559748427672957,
679
+ "grad_norm": 0.7091540694236755,
680
+ "learning_rate": 2.85e-05,
681
+ "loss": 1.0213,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.09660377358490566,
686
+ "grad_norm": 0.7268860340118408,
687
+ "learning_rate": 2.8800000000000002e-05,
688
+ "loss": 0.9775,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.09761006289308176,
693
+ "grad_norm": 0.7862218022346497,
694
+ "learning_rate": 2.91e-05,
695
+ "loss": 1.1169,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.09861635220125786,
700
+ "grad_norm": 0.9230831861495972,
701
+ "learning_rate": 2.94e-05,
702
+ "loss": 1.0902,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.09962264150943397,
707
+ "grad_norm": 1.130565881729126,
708
+ "learning_rate": 2.9700000000000004e-05,
709
+ "loss": 1.2398,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.10062893081761007,
714
+ "grad_norm": 1.6438910961151123,
715
+ "learning_rate": 3e-05,
716
+ "loss": 1.191,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.10163522012578616,
721
+ "grad_norm": 0.2781599462032318,
722
+ "learning_rate": 3.03e-05,
723
+ "loss": 0.5496,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.10264150943396226,
728
+ "grad_norm": 0.4129364788532257,
729
+ "learning_rate": 3.0600000000000005e-05,
730
+ "loss": 0.6212,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.10364779874213836,
735
+ "grad_norm": 0.38384121656417847,
736
+ "learning_rate": 3.09e-05,
737
+ "loss": 0.6719,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.10465408805031447,
742
+ "grad_norm": 0.29824548959732056,
743
+ "learning_rate": 3.1200000000000006e-05,
744
+ "loss": 0.6618,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.10566037735849057,
749
+ "grad_norm": 0.3344751000404358,
750
+ "learning_rate": 3.15e-05,
751
+ "loss": 0.7009,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.10666666666666667,
756
+ "grad_norm": 0.2800855338573456,
757
+ "learning_rate": 3.18e-05,
758
+ "loss": 0.6809,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.10767295597484276,
763
+ "grad_norm": 0.2987403869628906,
764
+ "learning_rate": 3.21e-05,
765
+ "loss": 0.7403,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.10867924528301887,
770
+ "grad_norm": 0.3085695207118988,
771
+ "learning_rate": 3.24e-05,
772
+ "loss": 0.7999,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.10968553459119497,
777
+ "grad_norm": 0.36500483751296997,
778
+ "learning_rate": 3.27e-05,
779
+ "loss": 0.8602,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.11069182389937107,
784
+ "grad_norm": 0.31299957633018494,
785
+ "learning_rate": 3.3e-05,
786
+ "loss": 0.8269,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.11169811320754718,
791
+ "grad_norm": 0.34132349491119385,
792
+ "learning_rate": 3.33e-05,
793
+ "loss": 0.8163,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.11270440251572326,
798
+ "grad_norm": 0.34863606095314026,
799
+ "learning_rate": 3.3600000000000004e-05,
800
+ "loss": 0.8515,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.11371069182389937,
805
+ "grad_norm": 0.347277969121933,
806
+ "learning_rate": 3.39e-05,
807
+ "loss": 0.8504,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.11471698113207547,
812
+ "grad_norm": 0.28663745522499084,
813
+ "learning_rate": 3.4200000000000005e-05,
814
+ "loss": 0.7537,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.11572327044025157,
819
+ "grad_norm": 0.3243389427661896,
820
+ "learning_rate": 3.4500000000000005e-05,
821
+ "loss": 0.7972,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.11672955974842768,
826
+ "grad_norm": 0.33570441603660583,
827
+ "learning_rate": 3.48e-05,
828
+ "loss": 0.9207,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.11773584905660377,
833
+ "grad_norm": 0.329550564289093,
834
+ "learning_rate": 3.5100000000000006e-05,
835
+ "loss": 0.8054,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.11874213836477987,
840
+ "grad_norm": 0.35539188981056213,
841
+ "learning_rate": 3.54e-05,
842
+ "loss": 0.8552,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.11974842767295597,
847
+ "grad_norm": 0.3422081172466278,
848
+ "learning_rate": 3.57e-05,
849
+ "loss": 0.8242,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.12075471698113208,
854
+ "grad_norm": 0.3479245603084564,
855
+ "learning_rate": 3.6e-05,
856
+ "loss": 0.9574,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.12176100628930818,
861
+ "grad_norm": 0.3424389064311981,
862
+ "learning_rate": 3.63e-05,
863
+ "loss": 0.8586,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.12276729559748428,
868
+ "grad_norm": 0.3260529339313507,
869
+ "learning_rate": 3.66e-05,
870
+ "loss": 0.8643,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.12377358490566037,
875
+ "grad_norm": 0.32257863879203796,
876
+ "learning_rate": 3.69e-05,
877
+ "loss": 0.7959,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.12477987421383648,
882
+ "grad_norm": 0.3997071087360382,
883
+ "learning_rate": 3.72e-05,
884
+ "loss": 0.9142,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.12578616352201258,
889
+ "grad_norm": 0.34371042251586914,
890
+ "learning_rate": 3.7500000000000003e-05,
891
+ "loss": 0.8725,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.12679245283018867,
896
+ "grad_norm": 0.3547852635383606,
897
+ "learning_rate": 3.7800000000000004e-05,
898
+ "loss": 0.8642,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.12779874213836478,
903
+ "grad_norm": 0.39939579367637634,
904
+ "learning_rate": 3.8100000000000005e-05,
905
+ "loss": 0.8844,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.12880503144654087,
910
+ "grad_norm": 0.43842682242393494,
911
+ "learning_rate": 3.8400000000000005e-05,
912
+ "loss": 0.9023,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.129811320754717,
917
+ "grad_norm": 0.39390280842781067,
918
+ "learning_rate": 3.87e-05,
919
+ "loss": 0.8407,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.13081761006289308,
924
+ "grad_norm": 0.4113910496234894,
925
+ "learning_rate": 3.9000000000000006e-05,
926
+ "loss": 0.8262,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.13182389937106917,
931
+ "grad_norm": 0.4252544641494751,
932
+ "learning_rate": 3.93e-05,
933
+ "loss": 0.9217,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.1328301886792453,
938
+ "grad_norm": 0.4059774577617645,
939
+ "learning_rate": 3.96e-05,
940
+ "loss": 0.891,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.13383647798742138,
945
+ "grad_norm": 0.4556514024734497,
946
+ "learning_rate": 3.990000000000001e-05,
947
+ "loss": 0.8422,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.1348427672955975,
952
+ "grad_norm": 0.4458742141723633,
953
+ "learning_rate": 4.02e-05,
954
+ "loss": 0.8469,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.13584905660377358,
959
+ "grad_norm": 0.5275019407272339,
960
+ "learning_rate": 4.05e-05,
961
+ "loss": 0.9503,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.13685534591194967,
966
+ "grad_norm": 0.5571326017379761,
967
+ "learning_rate": 4.08e-05,
968
+ "loss": 0.9006,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.1378616352201258,
973
+ "grad_norm": 0.5211470723152161,
974
+ "learning_rate": 4.11e-05,
975
+ "loss": 0.896,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.13886792452830188,
980
+ "grad_norm": 0.5354921221733093,
981
+ "learning_rate": 4.1400000000000003e-05,
982
+ "loss": 0.8761,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.139874213836478,
987
+ "grad_norm": 0.5351850986480713,
988
+ "learning_rate": 4.1700000000000004e-05,
989
+ "loss": 0.913,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.14088050314465408,
994
+ "grad_norm": 0.5430857539176941,
995
+ "learning_rate": 4.2000000000000004e-05,
996
+ "loss": 0.9542,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.1418867924528302,
1001
+ "grad_norm": 0.6346920728683472,
1002
+ "learning_rate": 4.23e-05,
1003
+ "loss": 0.9038,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.1428930817610063,
1008
+ "grad_norm": 0.6297568678855896,
1009
+ "learning_rate": 4.2600000000000005e-05,
1010
+ "loss": 0.9314,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.14389937106918238,
1015
+ "grad_norm": 0.699191689491272,
1016
+ "learning_rate": 4.2900000000000006e-05,
1017
+ "loss": 0.9658,
1018
+ "step": 143
1019
+ },
1020
+ {
1021
+ "epoch": 0.1449056603773585,
1022
+ "grad_norm": 0.6862769722938538,
1023
+ "learning_rate": 4.32e-05,
1024
+ "loss": 1.0581,
1025
+ "step": 144
1026
+ },
1027
+ {
1028
+ "epoch": 0.1459119496855346,
1029
+ "grad_norm": 0.7385261058807373,
1030
+ "learning_rate": 4.35e-05,
1031
+ "loss": 1.0378,
1032
+ "step": 145
1033
+ },
1034
+ {
1035
+ "epoch": 0.1469182389937107,
1036
+ "grad_norm": 0.8822638988494873,
1037
+ "learning_rate": 4.380000000000001e-05,
1038
+ "loss": 1.0691,
1039
+ "step": 146
1040
+ },
1041
+ {
1042
+ "epoch": 0.1479245283018868,
1043
+ "grad_norm": 0.8276723027229309,
1044
+ "learning_rate": 4.41e-05,
1045
+ "loss": 1.0017,
1046
+ "step": 147
1047
+ },
1048
+ {
1049
+ "epoch": 0.14893081761006288,
1050
+ "grad_norm": 0.9372941851615906,
1051
+ "learning_rate": 4.44e-05,
1052
+ "loss": 1.1179,
1053
+ "step": 148
1054
+ },
1055
+ {
1056
+ "epoch": 0.149937106918239,
1057
+ "grad_norm": 1.1694546937942505,
1058
+ "learning_rate": 4.47e-05,
1059
+ "loss": 1.0597,
1060
+ "step": 149
1061
+ },
1062
+ {
1063
+ "epoch": 0.1509433962264151,
1064
+ "grad_norm": 2.0057129859924316,
1065
+ "learning_rate": 4.5e-05,
1066
+ "loss": 0.9425,
1067
+ "step": 150
1068
+ },
1069
+ {
1070
+ "epoch": 0.1509433962264151,
1071
+ "eval_loss": 0.8647085428237915,
1072
+ "eval_runtime": 72.4006,
1073
+ "eval_samples_per_second": 46.229,
1074
+ "eval_steps_per_second": 11.561,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.1519496855345912,
1079
+ "grad_norm": 0.288259893655777,
1080
+ "learning_rate": 4.5299999999999997e-05,
1081
+ "loss": 0.4872,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.1529559748427673,
1086
+ "grad_norm": 0.3159155249595642,
1087
+ "learning_rate": 4.5600000000000004e-05,
1088
+ "loss": 0.4908,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.15396226415094338,
1093
+ "grad_norm": 0.3822842836380005,
1094
+ "learning_rate": 4.5900000000000004e-05,
1095
+ "loss": 0.6747,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.1549685534591195,
1100
+ "grad_norm": 0.34155163168907166,
1101
+ "learning_rate": 4.62e-05,
1102
+ "loss": 0.6869,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.1559748427672956,
1107
+ "grad_norm": 0.30352383852005005,
1108
+ "learning_rate": 4.6500000000000005e-05,
1109
+ "loss": 0.7332,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.1569811320754717,
1114
+ "grad_norm": 0.27222898602485657,
1115
+ "learning_rate": 4.6800000000000006e-05,
1116
+ "loss": 0.6474,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.1579874213836478,
1121
+ "grad_norm": 0.25012049078941345,
1122
+ "learning_rate": 4.71e-05,
1123
+ "loss": 0.6288,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.1589937106918239,
1128
+ "grad_norm": 0.3045409023761749,
1129
+ "learning_rate": 4.74e-05,
1130
+ "loss": 0.7165,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.16,
1135
+ "grad_norm": 0.35603249073028564,
1136
+ "learning_rate": 4.770000000000001e-05,
1137
+ "loss": 0.7622,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.1610062893081761,
1142
+ "grad_norm": 0.3265491724014282,
1143
+ "learning_rate": 4.8e-05,
1144
+ "loss": 0.7179,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.1620125786163522,
1149
+ "grad_norm": 0.3346395194530487,
1150
+ "learning_rate": 4.83e-05,
1151
+ "loss": 0.795,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.1630188679245283,
1156
+ "grad_norm": 0.30010277032852173,
1157
+ "learning_rate": 4.860000000000001e-05,
1158
+ "loss": 0.7067,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.16402515723270442,
1163
+ "grad_norm": 0.2951001524925232,
1164
+ "learning_rate": 4.89e-05,
1165
+ "loss": 0.7975,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.1650314465408805,
1170
+ "grad_norm": 0.31591150164604187,
1171
+ "learning_rate": 4.92e-05,
1172
+ "loss": 0.8215,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.1660377358490566,
1177
+ "grad_norm": 0.2965446412563324,
1178
+ "learning_rate": 4.9500000000000004e-05,
1179
+ "loss": 0.7495,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.1670440251572327,
1184
+ "grad_norm": 0.2988322675228119,
1185
+ "learning_rate": 4.9800000000000004e-05,
1186
+ "loss": 0.7753,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.1680503144654088,
1191
+ "grad_norm": 0.3438805937767029,
1192
+ "learning_rate": 5.01e-05,
1193
+ "loss": 0.8675,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.16905660377358492,
1198
+ "grad_norm": 0.3534359633922577,
1199
+ "learning_rate": 5.0400000000000005e-05,
1200
+ "loss": 0.8761,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.170062893081761,
1205
+ "grad_norm": 0.366860032081604,
1206
+ "learning_rate": 5.0700000000000006e-05,
1207
+ "loss": 0.7727,
1208
+ "step": 169
1209
+ },
1210
+ {
1211
+ "epoch": 0.1710691823899371,
1212
+ "grad_norm": 0.325207382440567,
1213
+ "learning_rate": 5.1e-05,
1214
+ "loss": 0.8902,
1215
+ "step": 170
1216
+ },
1217
+ {
1218
+ "epoch": 0.1720754716981132,
1219
+ "grad_norm": 0.3613484501838684,
1220
+ "learning_rate": 5.13e-05,
1221
+ "loss": 0.8652,
1222
+ "step": 171
1223
+ },
1224
+ {
1225
+ "epoch": 0.1730817610062893,
1226
+ "grad_norm": 0.34094613790512085,
1227
+ "learning_rate": 5.160000000000001e-05,
1228
+ "loss": 0.8303,
1229
+ "step": 172
1230
+ },
1231
+ {
1232
+ "epoch": 0.17408805031446542,
1233
+ "grad_norm": 0.3416270613670349,
1234
+ "learning_rate": 5.19e-05,
1235
+ "loss": 0.8074,
1236
+ "step": 173
1237
+ },
1238
+ {
1239
+ "epoch": 0.1750943396226415,
1240
+ "grad_norm": 0.35190239548683167,
1241
+ "learning_rate": 5.22e-05,
1242
+ "loss": 0.8995,
1243
+ "step": 174
1244
+ },
1245
+ {
1246
+ "epoch": 0.1761006289308176,
1247
+ "grad_norm": 0.355774849653244,
1248
+ "learning_rate": 5.250000000000001e-05,
1249
+ "loss": 0.7938,
1250
+ "step": 175
1251
+ },
1252
+ {
1253
+ "epoch": 0.17710691823899372,
1254
+ "grad_norm": 0.40358009934425354,
1255
+ "learning_rate": 5.28e-05,
1256
+ "loss": 0.8999,
1257
+ "step": 176
1258
+ },
1259
+ {
1260
+ "epoch": 0.1781132075471698,
1261
+ "grad_norm": 0.3395152986049652,
1262
+ "learning_rate": 5.31e-05,
1263
+ "loss": 0.8034,
1264
+ "step": 177
1265
+ },
1266
+ {
1267
+ "epoch": 0.17911949685534592,
1268
+ "grad_norm": 0.3633538484573364,
1269
+ "learning_rate": 5.340000000000001e-05,
1270
+ "loss": 0.8634,
1271
+ "step": 178
1272
+ },
1273
+ {
1274
+ "epoch": 0.180125786163522,
1275
+ "grad_norm": 0.367371141910553,
1276
+ "learning_rate": 5.3700000000000004e-05,
1277
+ "loss": 0.8588,
1278
+ "step": 179
1279
+ },
1280
+ {
1281
+ "epoch": 0.1811320754716981,
1282
+ "grad_norm": 0.38628652691841125,
1283
+ "learning_rate": 5.4000000000000005e-05,
1284
+ "loss": 0.9101,
1285
+ "step": 180
1286
+ },
1287
+ {
1288
+ "epoch": 0.18213836477987422,
1289
+ "grad_norm": 0.4008401036262512,
1290
+ "learning_rate": 5.4300000000000005e-05,
1291
+ "loss": 0.8333,
1292
+ "step": 181
1293
+ },
1294
+ {
1295
+ "epoch": 0.1831446540880503,
1296
+ "grad_norm": 0.3967512547969818,
1297
+ "learning_rate": 5.4600000000000006e-05,
1298
+ "loss": 0.8003,
1299
+ "step": 182
1300
+ },
1301
+ {
1302
+ "epoch": 0.18415094339622642,
1303
+ "grad_norm": 0.4281199276447296,
1304
+ "learning_rate": 5.49e-05,
1305
+ "loss": 0.8564,
1306
+ "step": 183
1307
+ },
1308
+ {
1309
+ "epoch": 0.1851572327044025,
1310
+ "grad_norm": 0.44826948642730713,
1311
+ "learning_rate": 5.52e-05,
1312
+ "loss": 0.9245,
1313
+ "step": 184
1314
+ },
1315
+ {
1316
+ "epoch": 0.1861635220125786,
1317
+ "grad_norm": 0.46945154666900635,
1318
+ "learning_rate": 5.550000000000001e-05,
1319
+ "loss": 0.9026,
1320
+ "step": 185
1321
+ },
1322
+ {
1323
+ "epoch": 0.18716981132075472,
1324
+ "grad_norm": 0.5053539872169495,
1325
+ "learning_rate": 5.58e-05,
1326
+ "loss": 0.8419,
1327
+ "step": 186
1328
+ },
1329
+ {
1330
+ "epoch": 0.1881761006289308,
1331
+ "grad_norm": 0.539570152759552,
1332
+ "learning_rate": 5.61e-05,
1333
+ "loss": 0.933,
1334
+ "step": 187
1335
+ },
1336
+ {
1337
+ "epoch": 0.18918238993710693,
1338
+ "grad_norm": 0.5156318545341492,
1339
+ "learning_rate": 5.640000000000001e-05,
1340
+ "loss": 0.8187,
1341
+ "step": 188
1342
+ },
1343
+ {
1344
+ "epoch": 0.19018867924528302,
1345
+ "grad_norm": 0.5218313932418823,
1346
+ "learning_rate": 5.67e-05,
1347
+ "loss": 0.9329,
1348
+ "step": 189
1349
+ },
1350
+ {
1351
+ "epoch": 0.19119496855345913,
1352
+ "grad_norm": 0.5657551288604736,
1353
+ "learning_rate": 5.7e-05,
1354
+ "loss": 0.9744,
1355
+ "step": 190
1356
+ },
1357
+ {
1358
+ "epoch": 0.19220125786163522,
1359
+ "grad_norm": 0.6356487274169922,
1360
+ "learning_rate": 5.730000000000001e-05,
1361
+ "loss": 1.1001,
1362
+ "step": 191
1363
+ },
1364
+ {
1365
+ "epoch": 0.1932075471698113,
1366
+ "grad_norm": 0.5877925753593445,
1367
+ "learning_rate": 5.7600000000000004e-05,
1368
+ "loss": 0.8659,
1369
+ "step": 192
1370
+ },
1371
+ {
1372
+ "epoch": 0.19421383647798743,
1373
+ "grad_norm": 0.6765493750572205,
1374
+ "learning_rate": 5.7900000000000005e-05,
1375
+ "loss": 0.9198,
1376
+ "step": 193
1377
+ },
1378
+ {
1379
+ "epoch": 0.19522012578616352,
1380
+ "grad_norm": 0.7951050400733948,
1381
+ "learning_rate": 5.82e-05,
1382
+ "loss": 1.0845,
1383
+ "step": 194
1384
+ },
1385
+ {
1386
+ "epoch": 0.19622641509433963,
1387
+ "grad_norm": 0.7103424668312073,
1388
+ "learning_rate": 5.8500000000000006e-05,
1389
+ "loss": 0.9394,
1390
+ "step": 195
1391
+ },
1392
+ {
1393
+ "epoch": 0.19723270440251572,
1394
+ "grad_norm": 0.8180978298187256,
1395
+ "learning_rate": 5.88e-05,
1396
+ "loss": 1.0566,
1397
+ "step": 196
1398
+ },
1399
+ {
1400
+ "epoch": 0.1982389937106918,
1401
+ "grad_norm": 0.87216717004776,
1402
+ "learning_rate": 5.91e-05,
1403
+ "loss": 1.0402,
1404
+ "step": 197
1405
+ },
1406
+ {
1407
+ "epoch": 0.19924528301886793,
1408
+ "grad_norm": 0.9373968839645386,
1409
+ "learning_rate": 5.940000000000001e-05,
1410
+ "loss": 1.0354,
1411
+ "step": 198
1412
+ },
1413
+ {
1414
+ "epoch": 0.20025157232704402,
1415
+ "grad_norm": 1.068832516670227,
1416
+ "learning_rate": 5.97e-05,
1417
+ "loss": 0.9874,
1418
+ "step": 199
1419
+ },
1420
+ {
1421
+ "epoch": 0.20125786163522014,
1422
+ "grad_norm": 1.516627311706543,
1423
+ "learning_rate": 6e-05,
1424
+ "loss": 1.0475,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.20226415094339623,
1429
+ "grad_norm": 0.2923840880393982,
1430
+ "learning_rate": 6.030000000000001e-05,
1431
+ "loss": 0.5281,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.20327044025157232,
1436
+ "grad_norm": 0.29050689935684204,
1437
+ "learning_rate": 6.06e-05,
1438
+ "loss": 0.4798,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.20427672955974843,
1443
+ "grad_norm": 0.4115563929080963,
1444
+ "learning_rate": 6.09e-05,
1445
+ "loss": 0.6778,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.20528301886792452,
1450
+ "grad_norm": 0.3951669931411743,
1451
+ "learning_rate": 6.120000000000001e-05,
1452
+ "loss": 0.6916,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.20628930817610064,
1457
+ "grad_norm": 0.2904520332813263,
1458
+ "learning_rate": 6.15e-05,
1459
+ "loss": 0.6837,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.20729559748427673,
1464
+ "grad_norm": 0.2610388696193695,
1465
+ "learning_rate": 6.18e-05,
1466
+ "loss": 0.6065,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.20830188679245282,
1471
+ "grad_norm": 0.23877385258674622,
1472
+ "learning_rate": 6.21e-05,
1473
+ "loss": 0.5818,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.20930817610062893,
1478
+ "grad_norm": 0.3209669589996338,
1479
+ "learning_rate": 6.240000000000001e-05,
1480
+ "loss": 0.6615,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.21031446540880502,
1485
+ "grad_norm": 0.373333603143692,
1486
+ "learning_rate": 6.27e-05,
1487
+ "loss": 0.7769,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.21132075471698114,
1492
+ "grad_norm": 0.3545984923839569,
1493
+ "learning_rate": 6.3e-05,
1494
+ "loss": 0.7624,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.21232704402515723,
1499
+ "grad_norm": 0.3442912697792053,
1500
+ "learning_rate": 6.330000000000001e-05,
1501
+ "loss": 0.744,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.21333333333333335,
1506
+ "grad_norm": 0.3227010667324066,
1507
+ "learning_rate": 6.36e-05,
1508
+ "loss": 0.8385,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.21433962264150944,
1513
+ "grad_norm": 0.2944405674934387,
1514
+ "learning_rate": 6.39e-05,
1515
+ "loss": 0.7201,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.21534591194968553,
1520
+ "grad_norm": 0.3218012750148773,
1521
+ "learning_rate": 6.42e-05,
1522
+ "loss": 0.799,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.21635220125786164,
1527
+ "grad_norm": 0.3213767111301422,
1528
+ "learning_rate": 6.450000000000001e-05,
1529
+ "loss": 0.7873,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.21735849056603773,
1534
+ "grad_norm": 0.3547811806201935,
1535
+ "learning_rate": 6.48e-05,
1536
+ "loss": 0.8379,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.21836477987421385,
1541
+ "grad_norm": 0.3962251543998718,
1542
+ "learning_rate": 6.510000000000001e-05,
1543
+ "loss": 0.8377,
1544
+ "step": 217
1545
+ },
1546
+ {
1547
+ "epoch": 0.21937106918238994,
1548
+ "grad_norm": 0.33094266057014465,
1549
+ "learning_rate": 6.54e-05,
1550
+ "loss": 0.7869,
1551
+ "step": 218
1552
+ },
1553
+ {
1554
+ "epoch": 0.22037735849056603,
1555
+ "grad_norm": 0.3101328909397125,
1556
+ "learning_rate": 6.57e-05,
1557
+ "loss": 0.805,
1558
+ "step": 219
1559
+ },
1560
+ {
1561
+ "epoch": 0.22138364779874214,
1562
+ "grad_norm": 0.3209860622882843,
1563
+ "learning_rate": 6.6e-05,
1564
+ "loss": 0.8163,
1565
+ "step": 220
1566
+ },
1567
+ {
1568
+ "epoch": 0.22238993710691823,
1569
+ "grad_norm": 0.340444952249527,
1570
+ "learning_rate": 6.630000000000001e-05,
1571
+ "loss": 0.9052,
1572
+ "step": 221
1573
+ },
1574
+ {
1575
+ "epoch": 0.22339622641509435,
1576
+ "grad_norm": 0.36003029346466064,
1577
+ "learning_rate": 6.66e-05,
1578
+ "loss": 0.8657,
1579
+ "step": 222
1580
+ },
1581
+ {
1582
+ "epoch": 0.22440251572327044,
1583
+ "grad_norm": 0.40881285071372986,
1584
+ "learning_rate": 6.69e-05,
1585
+ "loss": 0.8777,
1586
+ "step": 223
1587
+ },
1588
+ {
1589
+ "epoch": 0.22540880503144653,
1590
+ "grad_norm": 0.3710480332374573,
1591
+ "learning_rate": 6.720000000000001e-05,
1592
+ "loss": 0.8709,
1593
+ "step": 224
1594
+ },
1595
+ {
1596
+ "epoch": 0.22641509433962265,
1597
+ "grad_norm": 0.35468587279319763,
1598
+ "learning_rate": 6.75e-05,
1599
+ "loss": 0.8358,
1600
+ "step": 225
1601
+ },
1602
+ {
1603
+ "epoch": 0.22742138364779874,
1604
+ "grad_norm": 0.3594996929168701,
1605
+ "learning_rate": 6.78e-05,
1606
+ "loss": 0.8274,
1607
+ "step": 226
1608
+ },
1609
+ {
1610
+ "epoch": 0.22842767295597485,
1611
+ "grad_norm": 0.34879687428474426,
1612
+ "learning_rate": 6.81e-05,
1613
+ "loss": 0.7641,
1614
+ "step": 227
1615
+ },
1616
+ {
1617
+ "epoch": 0.22943396226415094,
1618
+ "grad_norm": 0.3559417128562927,
1619
+ "learning_rate": 6.840000000000001e-05,
1620
+ "loss": 0.8445,
1621
+ "step": 228
1622
+ },
1623
+ {
1624
+ "epoch": 0.23044025157232703,
1625
+ "grad_norm": 0.3670806884765625,
1626
+ "learning_rate": 6.87e-05,
1627
+ "loss": 0.7682,
1628
+ "step": 229
1629
+ },
1630
+ {
1631
+ "epoch": 0.23144654088050315,
1632
+ "grad_norm": 0.36322924494743347,
1633
+ "learning_rate": 6.900000000000001e-05,
1634
+ "loss": 0.8262,
1635
+ "step": 230
1636
+ },
1637
+ {
1638
+ "epoch": 0.23245283018867924,
1639
+ "grad_norm": 0.3891243040561676,
1640
+ "learning_rate": 6.93e-05,
1641
+ "loss": 0.8628,
1642
+ "step": 231
1643
+ },
1644
+ {
1645
+ "epoch": 0.23345911949685536,
1646
+ "grad_norm": 0.39287006855010986,
1647
+ "learning_rate": 6.96e-05,
1648
+ "loss": 0.7999,
1649
+ "step": 232
1650
+ },
1651
+ {
1652
+ "epoch": 0.23446540880503144,
1653
+ "grad_norm": 0.45216286182403564,
1654
+ "learning_rate": 6.99e-05,
1655
+ "loss": 0.8008,
1656
+ "step": 233
1657
+ },
1658
+ {
1659
+ "epoch": 0.23547169811320753,
1660
+ "grad_norm": 0.41083312034606934,
1661
+ "learning_rate": 7.020000000000001e-05,
1662
+ "loss": 0.7043,
1663
+ "step": 234
1664
+ },
1665
+ {
1666
+ "epoch": 0.23647798742138365,
1667
+ "grad_norm": 0.467481404542923,
1668
+ "learning_rate": 7.05e-05,
1669
+ "loss": 0.9042,
1670
+ "step": 235
1671
+ },
1672
+ {
1673
+ "epoch": 0.23748427672955974,
1674
+ "grad_norm": 0.47072046995162964,
1675
+ "learning_rate": 7.08e-05,
1676
+ "loss": 0.8493,
1677
+ "step": 236
1678
+ },
1679
+ {
1680
+ "epoch": 0.23849056603773586,
1681
+ "grad_norm": 0.5148504972457886,
1682
+ "learning_rate": 7.110000000000001e-05,
1683
+ "loss": 0.8944,
1684
+ "step": 237
1685
+ },
1686
+ {
1687
+ "epoch": 0.23949685534591195,
1688
+ "grad_norm": 0.4873788356781006,
1689
+ "learning_rate": 7.14e-05,
1690
+ "loss": 0.8484,
1691
+ "step": 238
1692
+ },
1693
+ {
1694
+ "epoch": 0.24050314465408806,
1695
+ "grad_norm": 0.5475208163261414,
1696
+ "learning_rate": 7.170000000000001e-05,
1697
+ "loss": 0.938,
1698
+ "step": 239
1699
+ },
1700
+ {
1701
+ "epoch": 0.24150943396226415,
1702
+ "grad_norm": 0.562898576259613,
1703
+ "learning_rate": 7.2e-05,
1704
+ "loss": 0.968,
1705
+ "step": 240
1706
+ },
1707
+ {
1708
+ "epoch": 0.24251572327044024,
1709
+ "grad_norm": 0.5775845050811768,
1710
+ "learning_rate": 7.230000000000001e-05,
1711
+ "loss": 0.9167,
1712
+ "step": 241
1713
+ },
1714
+ {
1715
+ "epoch": 0.24352201257861636,
1716
+ "grad_norm": 0.6406755447387695,
1717
+ "learning_rate": 7.26e-05,
1718
+ "loss": 0.9806,
1719
+ "step": 242
1720
+ },
1721
+ {
1722
+ "epoch": 0.24452830188679245,
1723
+ "grad_norm": 0.7658033967018127,
1724
+ "learning_rate": 7.290000000000001e-05,
1725
+ "loss": 1.0084,
1726
+ "step": 243
1727
+ },
1728
+ {
1729
+ "epoch": 0.24553459119496857,
1730
+ "grad_norm": 0.6914187669754028,
1731
+ "learning_rate": 7.32e-05,
1732
+ "loss": 1.0369,
1733
+ "step": 244
1734
+ },
1735
+ {
1736
+ "epoch": 0.24654088050314465,
1737
+ "grad_norm": 0.7622518539428711,
1738
+ "learning_rate": 7.35e-05,
1739
+ "loss": 1.0694,
1740
+ "step": 245
1741
+ },
1742
+ {
1743
+ "epoch": 0.24754716981132074,
1744
+ "grad_norm": 0.7900513410568237,
1745
+ "learning_rate": 7.38e-05,
1746
+ "loss": 0.9953,
1747
+ "step": 246
1748
+ },
1749
+ {
1750
+ "epoch": 0.24855345911949686,
1751
+ "grad_norm": 0.7765729427337646,
1752
+ "learning_rate": 7.410000000000001e-05,
1753
+ "loss": 0.9145,
1754
+ "step": 247
1755
+ },
1756
+ {
1757
+ "epoch": 0.24955974842767295,
1758
+ "grad_norm": 0.9165322780609131,
1759
+ "learning_rate": 7.44e-05,
1760
+ "loss": 0.9706,
1761
+ "step": 248
1762
+ },
1763
+ {
1764
+ "epoch": 0.25056603773584907,
1765
+ "grad_norm": 1.0286595821380615,
1766
+ "learning_rate": 7.47e-05,
1767
+ "loss": 0.885,
1768
+ "step": 249
1769
+ },
1770
+ {
1771
+ "epoch": 0.25157232704402516,
1772
+ "grad_norm": 1.5639967918395996,
1773
+ "learning_rate": 7.500000000000001e-05,
1774
+ "loss": 1.1141,
1775
+ "step": 250
1776
+ },
1777
+ {
1778
+ "epoch": 0.25257861635220125,
1779
+ "grad_norm": 0.2546844184398651,
1780
+ "learning_rate": 7.53e-05,
1781
+ "loss": 0.4977,
1782
+ "step": 251
1783
+ },
1784
+ {
1785
+ "epoch": 0.25358490566037734,
1786
+ "grad_norm": 0.29418128728866577,
1787
+ "learning_rate": 7.560000000000001e-05,
1788
+ "loss": 0.601,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 0.2545911949685535,
1793
+ "grad_norm": 0.25388413667678833,
1794
+ "learning_rate": 7.590000000000002e-05,
1795
+ "loss": 0.5847,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 0.25559748427672957,
1800
+ "grad_norm": 0.2464444786310196,
1801
+ "learning_rate": 7.620000000000001e-05,
1802
+ "loss": 0.6033,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 0.25660377358490566,
1807
+ "grad_norm": 0.2632049024105072,
1808
+ "learning_rate": 7.65e-05,
1809
+ "loss": 0.679,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 0.25761006289308175,
1814
+ "grad_norm": 0.2602216899394989,
1815
+ "learning_rate": 7.680000000000001e-05,
1816
+ "loss": 0.6452,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 0.25861635220125784,
1821
+ "grad_norm": 0.2294234186410904,
1822
+ "learning_rate": 7.71e-05,
1823
+ "loss": 0.6278,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 0.259622641509434,
1828
+ "grad_norm": 0.25241509079933167,
1829
+ "learning_rate": 7.74e-05,
1830
+ "loss": 0.6991,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 0.26062893081761007,
1835
+ "grad_norm": 0.31433945894241333,
1836
+ "learning_rate": 7.77e-05,
1837
+ "loss": 0.7421,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 0.26163522012578616,
1842
+ "grad_norm": 0.27750471234321594,
1843
+ "learning_rate": 7.800000000000001e-05,
1844
+ "loss": 0.7088,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 0.26264150943396225,
1849
+ "grad_norm": 0.2663845121860504,
1850
+ "learning_rate": 7.83e-05,
1851
+ "loss": 0.6647,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 0.26364779874213834,
1856
+ "grad_norm": 0.2817147374153137,
1857
+ "learning_rate": 7.86e-05,
1858
+ "loss": 0.7404,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 0.2646540880503145,
1863
+ "grad_norm": 0.2903977632522583,
1864
+ "learning_rate": 7.890000000000001e-05,
1865
+ "loss": 0.7516,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 0.2656603773584906,
1870
+ "grad_norm": 0.2894536554813385,
1871
+ "learning_rate": 7.92e-05,
1872
+ "loss": 0.7456,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 0.26666666666666666,
1877
+ "grad_norm": 0.3023775517940521,
1878
+ "learning_rate": 7.950000000000001e-05,
1879
+ "loss": 0.7271,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 0.26767295597484275,
1884
+ "grad_norm": 0.3151356279850006,
1885
+ "learning_rate": 7.980000000000002e-05,
1886
+ "loss": 0.7934,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 0.26867924528301884,
1891
+ "grad_norm": 0.33253538608551025,
1892
+ "learning_rate": 8.010000000000001e-05,
1893
+ "loss": 0.8091,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 0.269685534591195,
1898
+ "grad_norm": 0.31868165731430054,
1899
+ "learning_rate": 8.04e-05,
1900
+ "loss": 0.8129,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 0.2706918238993711,
1905
+ "grad_norm": 0.310516893863678,
1906
+ "learning_rate": 8.07e-05,
1907
+ "loss": 0.8405,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 0.27169811320754716,
1912
+ "grad_norm": 0.33763372898101807,
1913
+ "learning_rate": 8.1e-05,
1914
+ "loss": 0.8847,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 0.27270440251572325,
1919
+ "grad_norm": 0.3426532447338104,
1920
+ "learning_rate": 8.13e-05,
1921
+ "loss": 0.8414,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 0.27371069182389934,
1926
+ "grad_norm": 0.32909977436065674,
1927
+ "learning_rate": 8.16e-05,
1928
+ "loss": 0.7759,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 0.2747169811320755,
1933
+ "grad_norm": 0.32656487822532654,
1934
+ "learning_rate": 8.190000000000001e-05,
1935
+ "loss": 0.8483,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 0.2757232704402516,
1940
+ "grad_norm": 0.34775760769844055,
1941
+ "learning_rate": 8.22e-05,
1942
+ "loss": 0.8266,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 0.27672955974842767,
1947
+ "grad_norm": 0.3375285565853119,
1948
+ "learning_rate": 8.25e-05,
1949
+ "loss": 0.8038,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 0.27773584905660376,
1954
+ "grad_norm": 0.33193573355674744,
1955
+ "learning_rate": 8.280000000000001e-05,
1956
+ "loss": 0.8453,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 0.2787421383647799,
1961
+ "grad_norm": 0.3424042761325836,
1962
+ "learning_rate": 8.31e-05,
1963
+ "loss": 0.8105,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 0.279748427672956,
1968
+ "grad_norm": 0.34351646900177,
1969
+ "learning_rate": 8.340000000000001e-05,
1970
+ "loss": 0.9062,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 0.2807547169811321,
1975
+ "grad_norm": 0.3484840393066406,
1976
+ "learning_rate": 8.370000000000002e-05,
1977
+ "loss": 0.8524,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 0.28176100628930817,
1982
+ "grad_norm": 0.4118354022502899,
1983
+ "learning_rate": 8.400000000000001e-05,
1984
+ "loss": 0.8195,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 0.28276729559748426,
1989
+ "grad_norm": 0.3858529329299927,
1990
+ "learning_rate": 8.43e-05,
1991
+ "loss": 0.8834,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 0.2837735849056604,
1996
+ "grad_norm": 0.43352559208869934,
1997
+ "learning_rate": 8.46e-05,
1998
+ "loss": 0.9224,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 0.2847798742138365,
2003
+ "grad_norm": 0.4096381664276123,
2004
+ "learning_rate": 8.49e-05,
2005
+ "loss": 0.8505,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 0.2857861635220126,
2010
+ "grad_norm": 0.4414840638637543,
2011
+ "learning_rate": 8.520000000000001e-05,
2012
+ "loss": 0.8873,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 0.28679245283018867,
2017
+ "grad_norm": 0.42483052611351013,
2018
+ "learning_rate": 8.55e-05,
2019
+ "loss": 0.844,
2020
+ "step": 285
2021
+ },
2022
+ {
2023
+ "epoch": 0.28779874213836476,
2024
+ "grad_norm": 0.47505491971969604,
2025
+ "learning_rate": 8.580000000000001e-05,
2026
+ "loss": 0.8902,
2027
+ "step": 286
2028
+ },
2029
+ {
2030
+ "epoch": 0.2888050314465409,
2031
+ "grad_norm": 0.4909922778606415,
2032
+ "learning_rate": 8.61e-05,
2033
+ "loss": 0.9051,
2034
+ "step": 287
2035
+ },
2036
+ {
2037
+ "epoch": 0.289811320754717,
2038
+ "grad_norm": 0.47221359610557556,
2039
+ "learning_rate": 8.64e-05,
2040
+ "loss": 0.8076,
2041
+ "step": 288
2042
+ },
2043
+ {
2044
+ "epoch": 0.2908176100628931,
2045
+ "grad_norm": 0.492624431848526,
2046
+ "learning_rate": 8.67e-05,
2047
+ "loss": 0.863,
2048
+ "step": 289
2049
+ },
2050
+ {
2051
+ "epoch": 0.2918238993710692,
2052
+ "grad_norm": 0.5304532647132874,
2053
+ "learning_rate": 8.7e-05,
2054
+ "loss": 0.8684,
2055
+ "step": 290
2056
+ },
2057
+ {
2058
+ "epoch": 0.29283018867924526,
2059
+ "grad_norm": 0.5642457604408264,
2060
+ "learning_rate": 8.730000000000001e-05,
2061
+ "loss": 0.9337,
2062
+ "step": 291
2063
+ },
2064
+ {
2065
+ "epoch": 0.2938364779874214,
2066
+ "grad_norm": 0.5815471410751343,
2067
+ "learning_rate": 8.760000000000002e-05,
2068
+ "loss": 0.9618,
2069
+ "step": 292
2070
+ },
2071
+ {
2072
+ "epoch": 0.2948427672955975,
2073
+ "grad_norm": 0.6020749807357788,
2074
+ "learning_rate": 8.790000000000001e-05,
2075
+ "loss": 0.9948,
2076
+ "step": 293
2077
+ },
2078
+ {
2079
+ "epoch": 0.2958490566037736,
2080
+ "grad_norm": 0.5898910164833069,
2081
+ "learning_rate": 8.82e-05,
2082
+ "loss": 0.9052,
2083
+ "step": 294
2084
+ },
2085
+ {
2086
+ "epoch": 0.2968553459119497,
2087
+ "grad_norm": 0.7975096106529236,
2088
+ "learning_rate": 8.85e-05,
2089
+ "loss": 0.9531,
2090
+ "step": 295
2091
+ },
2092
+ {
2093
+ "epoch": 0.29786163522012576,
2094
+ "grad_norm": 0.821437418460846,
2095
+ "learning_rate": 8.88e-05,
2096
+ "loss": 1.0587,
2097
+ "step": 296
2098
+ },
2099
+ {
2100
+ "epoch": 0.2988679245283019,
2101
+ "grad_norm": 0.8027580976486206,
2102
+ "learning_rate": 8.910000000000001e-05,
2103
+ "loss": 1.0143,
2104
+ "step": 297
2105
+ },
2106
+ {
2107
+ "epoch": 0.299874213836478,
2108
+ "grad_norm": 0.8040540218353271,
2109
+ "learning_rate": 8.94e-05,
2110
+ "loss": 0.9964,
2111
+ "step": 298
2112
+ },
2113
+ {
2114
+ "epoch": 0.3008805031446541,
2115
+ "grad_norm": 0.9765298962593079,
2116
+ "learning_rate": 8.970000000000001e-05,
2117
+ "loss": 1.0449,
2118
+ "step": 299
2119
+ },
2120
+ {
2121
+ "epoch": 0.3018867924528302,
2122
+ "grad_norm": 1.631256341934204,
2123
+ "learning_rate": 9e-05,
2124
+ "loss": 0.9422,
2125
+ "step": 300
2126
+ },
2127
+ {
2128
+ "epoch": 0.3018867924528302,
2129
+ "eval_loss": 0.8408719301223755,
2130
+ "eval_runtime": 72.1015,
2131
+ "eval_samples_per_second": 46.421,
2132
+ "eval_steps_per_second": 11.609,
2133
+ "step": 300
2134
+ }
2135
+ ],
2136
+ "logging_steps": 1,
2137
+ "max_steps": 600,
2138
+ "num_input_tokens_seen": 0,
2139
+ "num_train_epochs": 1,
2140
+ "save_steps": 300,
2141
+ "stateful_callbacks": {
2142
+ "EarlyStoppingCallback": {
2143
+ "args": {
2144
+ "early_stopping_patience": 4,
2145
+ "early_stopping_threshold": 0.0
2146
+ },
2147
+ "attributes": {
2148
+ "early_stopping_patience_counter": 0
2149
+ }
2150
+ },
2151
+ "TrainerControl": {
2152
+ "args": {
2153
+ "should_epoch_stop": false,
2154
+ "should_evaluate": false,
2155
+ "should_log": false,
2156
+ "should_save": true,
2157
+ "should_training_stop": false
2158
+ },
2159
+ "attributes": {}
2160
+ }
2161
+ },
2162
+ "total_flos": 1.7158725269716992e+17,
2163
+ "train_batch_size": 16,
2164
+ "trial_name": null,
2165
+ "trial_params": null
2166
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c5ef83948df5db42f26b475e9297655348dd354de8f9033fdfe8214e9d2b6f1
3
+ size 6840
last-checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff