--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: best_bert_model_fold_5 results: [] --- # best_bert_model_fold_5 This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co./ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0532 - Accuracy: 0.8586 - Precision: 0.8342 - Recall: 0.8005 - F1: 0.8134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 252 | 0.5880 | 0.8048 | 0.8281 | 0.6620 | 0.6694 | | 0.5304 | 2.0 | 504 | 0.8974 | 0.7928 | 0.7497 | 0.7582 | 0.7525 | | 0.5304 | 3.0 | 756 | 1.0145 | 0.7928 | 0.7483 | 0.7455 | 0.7418 | | 0.1872 | 4.0 | 1008 | 1.0229 | 0.8227 | 0.7856 | 0.7561 | 0.7678 | | 0.1872 | 5.0 | 1260 | 1.0532 | 0.8586 | 0.8342 | 0.8005 | 0.8134 | | 0.037 | 6.0 | 1512 | 1.2624 | 0.8347 | 0.7927 | 0.7997 | 0.7957 | | 0.037 | 7.0 | 1764 | 1.3287 | 0.8227 | 0.7806 | 0.7951 | 0.7870 | | 0.0076 | 8.0 | 2016 | 1.3369 | 0.8347 | 0.8064 | 0.7747 | 0.7863 | | 0.0076 | 9.0 | 2268 | 1.3292 | 0.8406 | 0.8093 | 0.7883 | 0.7974 | | 0.0002 | 10.0 | 2520 | 1.3507 | 0.8347 | 0.7970 | 0.7844 | 0.7901 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1