--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: best_berita_bert_model_fold_5 results: [] --- [Visualize in Weights & Biases]() # best_berita_bert_model_fold_5 This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co./ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0859 - Accuracy: 0.9833 - Precision: 0.9834 - Recall: 0.9830 - F1: 0.9832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5542 | 1.0 | 601 | 0.3531 | 0.9142 | 0.9204 | 0.9129 | 0.9108 | | 0.266 | 2.0 | 1202 | 0.1554 | 0.9625 | 0.9634 | 0.9620 | 0.9618 | | 0.1215 | 3.0 | 1803 | 0.0859 | 0.9833 | 0.9834 | 0.9830 | 0.9832 | | 0.0721 | 4.0 | 2404 | 0.1634 | 0.9725 | 0.9736 | 0.9721 | 0.9720 | | 0.0227 | 5.0 | 3005 | 0.4132 | 0.9484 | 0.9527 | 0.9475 | 0.9470 | | 0.0242 | 6.0 | 3606 | 0.2816 | 0.9609 | 0.9632 | 0.9602 | 0.9599 | | 0.0083 | 7.0 | 4207 | 0.2295 | 0.9717 | 0.9731 | 0.9712 | 0.9712 | | 0.0 | 8.0 | 4808 | 0.1644 | 0.9792 | 0.9800 | 0.9788 | 0.9789 | | 0.0002 | 9.0 | 5409 | 0.1868 | 0.9784 | 0.9792 | 0.9780 | 0.9781 | | 0.0 | 10.0 | 6010 | 0.1901 | 0.9784 | 0.9792 | 0.9780 | 0.9781 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1