--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: best_berita_bert_model_fold_3 results: [] --- # best_berita_bert_model_fold_3 This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co./ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1732 - Accuracy: 0.9808 - Precision: 0.9809 - Recall: 0.9811 - F1: 0.9809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5469 | 1.0 | 601 | 0.2814 | 0.9409 | 0.9416 | 0.9414 | 0.9410 | | 0.21 | 2.0 | 1202 | 0.1697 | 0.9600 | 0.9602 | 0.9605 | 0.9600 | | 0.1002 | 3.0 | 1803 | 0.2227 | 0.9667 | 0.9674 | 0.9673 | 0.9666 | | 0.0847 | 4.0 | 2404 | 0.2771 | 0.9584 | 0.9599 | 0.9592 | 0.9581 | | 0.029 | 5.0 | 3005 | 0.1732 | 0.9808 | 0.9809 | 0.9811 | 0.9809 | | 0.0095 | 6.0 | 3606 | 0.2415 | 0.9734 | 0.9737 | 0.9738 | 0.9733 | | 0.0134 | 7.0 | 4207 | 0.2048 | 0.9767 | 0.9769 | 0.9771 | 0.9766 | | 0.0001 | 8.0 | 4808 | 0.2916 | 0.9692 | 0.9697 | 0.9698 | 0.9691 | | 0.0039 | 9.0 | 5409 | 0.2201 | 0.9784 | 0.9786 | 0.9787 | 0.9784 | | 0.0 | 10.0 | 6010 | 0.2293 | 0.9742 | 0.9745 | 0.9746 | 0.9742 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1