--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 22best_berita_bert_model_fold_5 results: [] --- [Visualize in Weights & Biases]() # 22best_berita_bert_model_fold_5 This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co./ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2244 - Accuracy: 0.8436 - Precision: 0.8477 - Recall: 0.8429 - F1: 0.8431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 106 | 0.8179 | 0.6919 | 0.7903 | 0.6727 | 0.6450 | | No log | 2.0 | 212 | 0.5844 | 0.7773 | 0.7841 | 0.7778 | 0.7766 | | No log | 3.0 | 318 | 1.0969 | 0.7393 | 0.7562 | 0.7439 | 0.7378 | | No log | 4.0 | 424 | 0.9975 | 0.8246 | 0.8247 | 0.8236 | 0.8232 | | 0.404 | 5.0 | 530 | 1.1275 | 0.8104 | 0.8108 | 0.8067 | 0.8071 | | 0.404 | 6.0 | 636 | 1.1943 | 0.8199 | 0.8188 | 0.8191 | 0.8189 | | 0.404 | 7.0 | 742 | 1.2244 | 0.8436 | 0.8477 | 0.8429 | 0.8431 | | 0.404 | 8.0 | 848 | 1.2554 | 0.8341 | 0.8370 | 0.8335 | 0.8336 | | 0.404 | 9.0 | 954 | 1.2681 | 0.8294 | 0.8316 | 0.8288 | 0.8289 | | 0.0067 | 10.0 | 1060 | 1.2894 | 0.8246 | 0.8264 | 0.8241 | 0.8242 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1