--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 22best_berita_bert_model_fold_3 results: [] --- [Visualize in Weights & Biases]() # 22best_berita_bert_model_fold_3 This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co./ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6989 - Accuracy: 0.7915 - Precision: 0.8007 - Recall: 0.8070 - F1: 0.7911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 106 | 0.5874 | 0.7346 | 0.7387 | 0.7359 | 0.7275 | | No log | 2.0 | 212 | 0.8650 | 0.7678 | 0.7865 | 0.7559 | 0.7646 | | No log | 3.0 | 318 | 1.0826 | 0.7725 | 0.7782 | 0.7795 | 0.7730 | | No log | 4.0 | 424 | 2.0331 | 0.6967 | 0.7339 | 0.7168 | 0.6891 | | 0.3602 | 5.0 | 530 | 1.6682 | 0.7678 | 0.7803 | 0.7796 | 0.7682 | | 0.3602 | 6.0 | 636 | 1.6989 | 0.7915 | 0.8007 | 0.8070 | 0.7911 | | 0.3602 | 7.0 | 742 | 1.7597 | 0.7725 | 0.7742 | 0.7811 | 0.7709 | | 0.3602 | 8.0 | 848 | 1.8278 | 0.7725 | 0.7742 | 0.7811 | 0.7709 | | 0.3602 | 9.0 | 954 | 1.8531 | 0.7725 | 0.7742 | 0.7811 | 0.7709 | | 0.0126 | 10.0 | 1060 | 1.8599 | 0.7725 | 0.7742 | 0.7811 | 0.7709 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1