--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 22best_berita_bert_model_fold_1 results: [] --- [Visualize in Weights & Biases]() # 22best_berita_bert_model_fold_1 This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co./ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3730 - Accuracy: 0.8302 - Precision: 0.8319 - Recall: 0.8468 - F1: 0.8309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 106 | 0.7262 | 0.7123 | 0.7513 | 0.7032 | 0.6764 | | No log | 2.0 | 212 | 0.6140 | 0.8019 | 0.8154 | 0.8273 | 0.8032 | | No log | 3.0 | 318 | 1.0427 | 0.7594 | 0.7665 | 0.7740 | 0.7618 | | No log | 4.0 | 424 | 0.9092 | 0.8208 | 0.8191 | 0.8333 | 0.8214 | | 0.4074 | 5.0 | 530 | 1.4762 | 0.7830 | 0.8110 | 0.8148 | 0.7838 | | 0.4074 | 6.0 | 636 | 1.3960 | 0.7925 | 0.7954 | 0.8034 | 0.7923 | | 0.4074 | 7.0 | 742 | 1.3455 | 0.8255 | 0.8282 | 0.8421 | 0.8258 | | 0.4074 | 8.0 | 848 | 1.3730 | 0.8302 | 0.8319 | 0.8468 | 0.8309 | | 0.4074 | 9.0 | 954 | 1.3804 | 0.8302 | 0.8319 | 0.8468 | 0.8309 | | 0.0158 | 10.0 | 1060 | 1.3823 | 0.8302 | 0.8319 | 0.8468 | 0.8309 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1