Mariia commited on
Commit
638e249
1 Parent(s): 25e9432

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -0
README.md CHANGED
@@ -1,3 +1,38 @@
1
  ---
2
  license: afl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: afl-3.0
3
+ language:
4
+ - es
5
+ tags:
6
+ - biomedical
7
+ - social media
8
+ - ner
9
+ metrics:
10
+ - f1
11
+ widget:
12
+ - text: "La semana que viene estaremos en el I Congreso para personas con cáncer y familiares ☺ #aecc #Congreso #finde "
13
+ example_title: "Oncology"
14
+ - text: "No dejéis de leer esta interesantísima entrada del Dr. Martínez-Lage donde reivindica los errores médicos a la hora de diagnosticar #Alzheimer u otros tipos de #demencias."
15
+ example_title: "Alzheimer"
16
+ - text: "Cada vez hay más CCAA que se suman la regulación de #desfibriladores (#DESA) en espacios deportivos, lamentamos este caso de parada cardíaca que afectó de nuevo a un deportista."
17
+ example_title: "cardiac arrest"
18
+ - text: "La jaqueca o la migraña puede llegar a ser muy desesperante, algunas veces los remedios para dolor de cabeza de origen farmacéutico son ineficientes y por más analgésicos que tomemos el malestar no cede."
19
+ example_title: "Migraine"
20
+ - text: "Os sorprenderíais la de mensajes que me llegan cada día (sobre todo cuando se acerca el verano) preguntándome como eliminar la celulitis, como hacer que desaparezca mágicamente la grasita… "
21
+ example_title: "Celulitis"
22
  ---
23
+
24
+ # Disease mention recognizer for Spanish Social Media texts 🦠💬
25
+ This resource derives from the participation of the SINAI team in [Mining Social Media Content for Disease Mention (SocialDisNER)](https://temu.bsc.es/socialdisner/) shared task. This task focused on the recognition of disease mentions in tweets written in Spanish with the aim of using Twitter as a proxy to better understand societal perception of disease. This task brought the community effort to developing named entity recognition (NER) approaches to detect **all kinds** of disease mentions in social media text.
26
+
27
+ Our approach is based on a [model pre-trained on general-domain text](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne). In order to leverage large scale additional [Silver Standard data](https://zenodo.org/record/6803567/preview/SocialDisNER_LargeScale_additionaldata.zip#tree_item0) with automatically generated labels provided by task’s organisers we designed a two-stage fine-tuning framework. The figure below illustrated the fine-tuning process:
28
+
29
+ # Results
30
+ The model contained in this repository constitutes the fundament of the NER system presented by the SINAI team on SocialDisNER. Enhanced with data [`pysentimiento`](https://github.com/pysentimiento/pysentimiento) pre-processing and rule-based submission post-processing, it obtained encouraging results during the official evaluation, which are summarised in the table below.
31
+
32
+ | Precision | Recall | F1-score |
33
+ |-----------|--------|----------|
34
+ | 0.756 |0. 795 | 0.770 |
35
+
36
+
37
+ # System description paper and citation
38
+ The system description paper will be published at Social Media Mining for Health Application (#SMM4H) held on COLING22 in October 2022.