--- library_name: transformers tags: - mergekit - merge base_model: - bunnycore/Qwen2.5-3B-RP-Mix - Spestly/Athena-1-3B - Qwen/Qwen2.5-3B-Instruct - PowerInfer/SmallThinker-3B-Preview model-index: - name: Qwen2.5-3B-RP-Thinker results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 58.94 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Thinker name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 17.41 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Thinker name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 2.27 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Thinker name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 1.9 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Thinker name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 1.76 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Thinker name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 23.89 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Thinker name: Open LLM Leaderboard --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co./Qwen/Qwen2.5-3B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [bunnycore/Qwen2.5-3B-RP-Mix](https://huggingface.co./bunnycore/Qwen2.5-3B-RP-Mix) * [Spestly/Athena-1-3B](https://huggingface.co./Spestly/Athena-1-3B) * [PowerInfer/SmallThinker-3B-Preview](https://huggingface.co./PowerInfer/SmallThinker-3B-Preview) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: PowerInfer/SmallThinker-3B-Preview parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: bunnycore/Qwen2.5-3B-RP-Mix parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: Spestly/Athena-1-3B parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: Qwen/Qwen2.5-3B-Instruct parameters: normalize: true int8_mask: true dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/bunnycore__Qwen2.5-3B-RP-Thinker-details) | Metric |Value| |-------------------|----:| |Avg. |17.69| |IFEval (0-Shot) |58.94| |BBH (3-Shot) |17.41| |MATH Lvl 5 (4-Shot)| 2.27| |GPQA (0-shot) | 1.90| |MuSR (0-shot) | 1.76| |MMLU-PRO (5-shot) |23.89|