--- license: other license_name: yi-license license_link: https://huggingface.co./01-ai/Yi-34B/blob/main/LICENSE language: - en library_name: transformers pipeline_tag: text-generation --- **NousResearch/Nous-Capybara-34B**, **migtissera/Tess-M-v1.2** and **migtissera/Tess-M-v1.3** merged with a new, experimental implementation of "dare ties" via mergekit. See: > Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch https://github.com/yule-BUAA/MergeLM https://github.com/cg123/mergekit/tree/dare-tokenizer It was quantized with exllamav2 on 200 rows (400K tokens) on a long Vicuna format chat, a single sci fi story and a single fantasy story. This should hopefully yield better chat performance than the default wikitext quantization. Quantized to 4bpw, enough for **~45K context on a 24GB GPU.** *** Merged with the following config, and the tokenizer from Yi Llamafied: ``` models: - model: /home/alpha/Storage/Models/Raw/larryvrh_Yi-34B-200K-Llamafied # no parameters necessary for base model - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-M-v1.3 parameters: weight: 0.50 density: 0.56 - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-M-v1.2 parameters: weight: 0.20 density: 0.50 - model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B parameters: weight: 0.50 density: 0.56 merge_method: dare_ties base_model: /home/alpha/Storage/Models/Raw/larryvrh_Yi-34B-200K-Llamafied parameters: int8_mask: true dtype: bfloat16 ``` Tess 1.2 (at a low weight) and 1.3 were used because, according to the trainer, they were trained on different datasets: https://migel.substack.com/p/learnings-from-training-tess I chose not to include other finetunes, such as Dolphin, because they aren't trained on the 200K base. If any other 200K finetunes pop up, let me know. *** First exllama quantization pass, on 80 rows so it will fit in memory: ``` python convert.py --in_dir /home/alpha/FastModels/Capybara-Tess-34B-200K-DARE -o /home/alpha/FastModels/scratch -om /home/alpha/FastModels/capytess13mes.json --cal_dataset /home/alpha/Documents/smol.parquet -l 2048 -r 80 -ml 2048 -mr 40 -gr 40 -ss 4096 -nr -b 4.0 -hb 6 ``` Second exllama quantization pass. 200 rows: ``` python convert.py --in_dir /home/alpha/FastModels/Capybara-Tess-34B-200K-DARE -o /home/alpha/FastModels/scratch -m /home/alpha/FastModels/capytess13mes.json --cal_dataset /home/alpha/Documents/medium.parquet -l 2048 -r 200 -ml 2048 -mr 40 -gr 200 -ss 4096 -b 4.0 -hb 6 -cf /home/alpha/FastModels/Capybara-Tess-34B-200K-DARE-exl2-4bpw-fiction -nr ``` *** ## Prompt template: Orca-Vicuna ``` SYSTEM: {system_message} USER: {prompt} ASSISTANT: ``` Being a Yi model, try disabling the BOS token and/or running a lower temperature with MinP if output doesn't seem right. Sometimes the model "spells out" the stop token as `` like Capybara, so you may need to add `` as an additional stopping condition. *** Credits: https://github.com/cg123/mergekit/tree/dare-tokenizer https://huggingface.co./NousResearch/Nous-Capybara-34B/ https://huggingface.co./migtissera/Tess-M-v1.2 https://huggingface.co./migtissera/Tess-M-v1.3 https://huggingface.co./larryvrh/Yi-34B-200K-Llamafied https://huggingface.co./01-ai/Yi-34B-200K