bjarlestam
commited on
Commit
·
7502f2d
1
Parent(s):
89de7ed
Rock n roll
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.92 +/- 0.63
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2da62abe50b54955a1690dce0f5ad18b2f5136adf7be1cb8922b407fa0815d5
|
3 |
+
size 108106
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f53ffa000d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f539e692cc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1682362275383768137,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3Bcev0RJyb4c7Pq+AfPfvkc1vr+YMt2/CPWqv9AR2D+G+ZI/0NlxPT8KyL+EQtO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]]",
|
38 |
+
"desired_goal": "[[-0.61755157 -0.3931371 -0.49008262]\n [-0.43740085 -1.4860009 -1.7281065 ]\n [-1.3356028 1.6880436 1.1482399 ]\n [ 0.05904561 -1.5628127 -1.6504674 ]]",
|
39 |
+
"observation": "[[4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1KQOvr6ljb13jwo9rXKePVh3Fr5xR5I9hKAqOxScqb24gSM+jVwrPYG+WL0ueFY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.13930064 -0.06916378 0.03382822]\n [ 0.07736716 -0.14693964 0.07142533]\n [ 0.00260356 -0.08281723 0.15967453]\n [ 0.04183631 -0.05291605 0.20944282]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ341Bwjm8b+UhpRSlIwBbJRLMowBdJRHQKhQmlDWsil1fZQoaAZoCWgPQwhaZhGKrSDnv5SGlFKUaBVLMmgWR0CoUEkFwDNhdX2UKGgGaAloD0MIMnGrIAY64L+UhpRSlGgVSzJoFkdAqE/xeTmnwXV9lChoBmgJaA9DCI4EGmzqPO+/lIaUUpRoFUsyaBZHQKhPnjp9qlB1fZQoaAZoCWgPQwjYn8TnTvDzv5SGlFKUaBVLMmgWR0CoUlgFgUlBdX2UKGgGaAloD0MIN+Fembcq8r+UhpRSlGgVSzJoFkdAqFIGxt52QnV9lChoBmgJaA9DCHxGIjSCzfm/lIaUUpRoFUsyaBZHQKhRryPuG9J1fZQoaAZoCWgPQwhXCoFc4sjWv5SGlFKUaBVLMmgWR0CoUVuO801qdX2UKGgGaAloD0MI3lhQGJTp8b+UhpRSlGgVSzJoFkdAqFQuYc/+sHV9lChoBmgJaA9DCKpGrwYozfC/lIaUUpRoFUsyaBZHQKhT3RsMy8B1fZQoaAZoCWgPQwhI3jmUoSrjv5SGlFKUaBVLMmgWR0CoU4V/Ue+3dX2UKGgGaAloD0MIwqVjzjN2+b+UhpRSlGgVSzJoFkdAqFMx+8XenHV9lChoBmgJaA9DCCb752nA4Pe/lIaUUpRoFUsyaBZHQKhWWNKAavR1fZQoaAZoCWgPQwifknNiD639v5SGlFKUaBVLMmgWR0CoVge4b0e2dX2UKGgGaAloD0MIR+Umammu+7+UhpRSlGgVSzJoFkdAqFWwFNcnmnV9lChoBmgJaA9DCJc7M8Fwbve/lIaUUpRoFUsyaBZHQKhVXeMyaeB1fZQoaAZoCWgPQwgeNpGZC9z4v5SGlFKUaBVLMmgWR0CoWEpFb3XadX2UKGgGaAloD0MIyJbl6zL87b+UhpRSlGgVSzJoFkdAqFf6DK5kLHV9lChoBmgJaA9DCM0FLo81o/S/lIaUUpRoFUsyaBZHQKhXolKsdT51fZQoaAZoCWgPQwjo9LwbCwoEwJSGlFKUaBVLMmgWR0CoV08MuvlmdX2UKGgGaAloD0MIbLHbZ5VZ8L+UhpRSlGgVSzJoFkdAqFojCBPKuHV9lChoBmgJaA9DCBZod0gxwOq/lIaUUpRoFUsyaBZHQKhZ0M6RyOt1fZQoaAZoCWgPQwhrtvKS/wnzv5SGlFKUaBVLMmgWR0CoWXj4pMHsdX2UKGgGaAloD0MITUnW4eiq8b+UhpRSlGgVSzJoFkdAqFkkiD/VAnV9lChoBmgJaA9DCP1Okxlv6/G/lIaUUpRoFUsyaBZHQKhbQcFQl8h1fZQoaAZoCWgPQwiJCWr4Fpbwv5SGlFKUaBVLMmgWR0CoWu/eUILPdX2UKGgGaAloD0MIrJFdaRmp9b+UhpRSlGgVSzJoFkdAqFqXRPXTVnV9lChoBmgJaA9DCPnZyHVTSuu/lIaUUpRoFUsyaBZHQKhaQtsenyd1fZQoaAZoCWgPQwg9tmXAWUrgv5SGlFKUaBVLMmgWR0CoXFR8UmD2dX2UKGgGaAloD0MIoMN8eQH257+UhpRSlGgVSzJoFkdAqFwCVII4VHV9lChoBmgJaA9DCAKDpE+rqPO/lIaUUpRoFUsyaBZHQKhbqbVBlc11fZQoaAZoCWgPQwiQLcvXZXjhv5SGlFKUaBVLMmgWR0CoW1VBt1p1dX2UKGgGaAloD0MIPQrXo3A98L+UhpRSlGgVSzJoFkdAqF1ztgKF7HV9lChoBmgJaA9DCEP/BBcrKvm/lIaUUpRoFUsyaBZHQKhdIZm7J4l1fZQoaAZoCWgPQwh8SPje36DXv5SGlFKUaBVLMmgWR0CoXMkfs/pudX2UKGgGaAloD0MIzcggdxFm+r+UhpRSlGgVSzJoFkdAqFx0uJ1q33V9lChoBmgJaA9DCMsr19tmquK/lIaUUpRoFUsyaBZHQKheh/2kBS11fZQoaAZoCWgPQwhpccYwJ+jqv5SGlFKUaBVLMmgWR0CoXjXEIgNgdX2UKGgGaAloD0MIiBBXzt4Z5L+UhpRSlGgVSzJoFkdAqF3dCqp97XV9lChoBmgJaA9DCKM883LYfee/lIaUUpRoFUsyaBZHQKhdiIeo1k11fZQoaAZoCWgPQwhKQiJt40/dv5SGlFKUaBVLMmgWR0CoX6aPsAvMdX2UKGgGaAloD0MIEwznGmbo8b+UhpRSlGgVSzJoFkdAqF9Ua/ATI3V9lChoBmgJaA9DCF1Std0EX+y/lIaUUpRoFUsyaBZHQKhe+9nK4hF1fZQoaAZoCWgPQwhdMSO8PYjkv5SGlFKUaBVLMmgWR0CoXqd7ngYQdX2UKGgGaAloD0MIGXYYk/7e8L+UhpRSlGgVSzJoFkdAqGC/SH/LknV9lChoBmgJaA9DCFjhlo+kpP6/lIaUUpRoFUsyaBZHQKhgbSJj2Bd1fZQoaAZoCWgPQwhi2cwhqUXwv5SGlFKUaBVLMmgWR0CoYBRoIv8JdX2UKGgGaAloD0MIXVFKCFYV+L+UhpRSlGgVSzJoFkdAqF+/6Eal13V9lChoBmgJaA9DCLgFS3UBLwLAlIaUUpRoFUsyaBZHQKhh1u0kWyl1fZQoaAZoCWgPQwjt1jIZjgcFwJSGlFKUaBVLMmgWR0CoYYSGrS3LdX2UKGgGaAloD0MIobyPozny+L+UhpRSlGgVSzJoFkdAqGEr6LwWnHV9lChoBmgJaA9DCOC8OPHVTvC/lIaUUpRoFUsyaBZHQKhg15fMOgB1fZQoaAZoCWgPQwg8vVKWIQ7vv5SGlFKUaBVLMmgWR0CoYupo9LYgdX2UKGgGaAloD0MIwHYwYp8A47+UhpRSlGgVSzJoFkdAqGKYHTqjanV9lChoBmgJaA9DCJ4oCYm0De2/lIaUUpRoFUsyaBZHQKhiP2dupCN1fZQoaAZoCWgPQwgb8WQ3M3rhv5SGlFKUaBVLMmgWR0CoYerYGt6pdX2UKGgGaAloD0MIDmsqi8IuAsCUhpRSlGgVSzJoFkdAqGQlv60pmXV9lChoBmgJaA9DCGcLCK2H7/O/lIaUUpRoFUsyaBZHQKhj06d1+y91fZQoaAZoCWgPQwhMGTigpav/v5SGlFKUaBVLMmgWR0CoY3vHT7VKdX2UKGgGaAloD0MIHLEWnwJg6b+UhpRSlGgVSzJoFkdAqGMnV5KODXV9lChoBmgJaA9DCNaO4hx19Ou/lIaUUpRoFUsyaBZHQKhlTDiwSrZ1fZQoaAZoCWgPQwg8akyIuST2v5SGlFKUaBVLMmgWR0CoZPp4SpR5dX2UKGgGaAloD0MI7C5QUmCB67+UhpRSlGgVSzJoFkdAqGSiynk1dnV9lChoBmgJaA9DCI0JMZdUbdW/lIaUUpRoFUsyaBZHQKhkTwd8zAN1fZQoaAZoCWgPQwjVB5J3DuX5v5SGlFKUaBVLMmgWR0CoZmdRrJr+dX2UKGgGaAloD0MICJChYweV6L+UhpRSlGgVSzJoFkdAqGYVFWn0kHV9lChoBmgJaA9DCG8PQkC+hOO/lIaUUpRoFUsyaBZHQKhlvILgGbF1fZQoaAZoCWgPQwjlRpG1hhIGwJSGlFKUaBVLMmgWR0CoZWfbTMJQdX2UKGgGaAloD0MIZXCUvDqHAcCUhpRSlGgVSzJoFkdAqGeGI0qH5HV9lChoBmgJaA9DCDjYmxiSEwHAlIaUUpRoFUsyaBZHQKhnM/r0J4V1fZQoaAZoCWgPQwgkuJGyRXIQwJSGlFKUaBVLMmgWR0CoZttZeRgadX2UKGgGaAloD0MIMNeiBWjb7b+UhpRSlGgVSzJoFkdAqGaG4AjptHV9lChoBmgJaA9DCEOPGD23EPS/lIaUUpRoFUsyaBZHQKhontm+TNd1fZQoaAZoCWgPQwhJTbuYZrrwv5SGlFKUaBVLMmgWR0CoaEysr/bTdX2UKGgGaAloD0MIYd7jTBO28b+UhpRSlGgVSzJoFkdAqGf0RnOB2HV9lChoBmgJaA9DCFqAttWss/a/lIaUUpRoFUsyaBZHQKhnn9w3o9t1fZQoaAZoCWgPQwgNx/MZUG/iv5SGlFKUaBVLMmgWR0Coab3VLBbfdX2UKGgGaAloD0MI8pcW9Umu+7+UhpRSlGgVSzJoFkdAqGlrpxFRYXV9lChoBmgJaA9DCNu+R/31yvO/lIaUUpRoFUsyaBZHQKhpEy9mHxl1fZQoaAZoCWgPQwhj00ohkIvwv5SGlFKUaBVLMmgWR0CoaL7MHKOldX2UKGgGaAloD0MI2SH+YUvPBsCUhpRSlGgVSzJoFkdAqGrIq0+kg3V9lChoBmgJaA9DCJwZ/Wg4ZQvAlIaUUpRoFUsyaBZHQKhqdqveP7x1fZQoaAZoCWgPQwhhinJp/KIMwJSGlFKUaBVLMmgWR0Coah4ku6ErdX2UKGgGaAloD0MIzF8hc2VQ77+UhpRSlGgVSzJoFkdAqGnJgqmTDHV9lChoBmgJaA9DCAJhp1g1iOK/lIaUUpRoFUsyaBZHQKhr3aPjn3d1fZQoaAZoCWgPQwg8TtGRXP7lv5SGlFKUaBVLMmgWR0Coa4uQhfShdX2UKGgGaAloD0MI0clS6/3G7b+UhpRSlGgVSzJoFkdAqGsy2phnanV9lChoBmgJaA9DCG/XS1MEWATAlIaUUpRoFUsyaBZHQKhq3k5p8F91fZQoaAZoCWgPQwjpD808uSb8v5SGlFKUaBVLMmgWR0CobPp/PPcBdX2UKGgGaAloD0MIbeaQ1EJJ67+UhpRSlGgVSzJoFkdAqGyoTbnHN3V9lChoBmgJaA9DCAMlBRbAVPy/lIaUUpRoFUsyaBZHQKhsT8l5WzZ1fZQoaAZoCWgPQwjkZU0s8BXgv5SGlFKUaBVLMmgWR0Coa/trsSkCdX2UKGgGaAloD0MIQGoTJ/e78L+UhpRSlGgVSzJoFkdAqG50a86FNHV9lChoBmgJaA9DCB8r+G2IMfC/lIaUUpRoFUsyaBZHQKhuIvpQk5Z1fZQoaAZoCWgPQwghkiHH1rPrv5SGlFKUaBVLMmgWR0CobctN8E3bdX2UKGgGaAloD0MIZyeDo+TV4b+UhpRSlGgVSzJoFkdAqG13xhDw6XV9lChoBmgJaA9DCHAKKxVUlPi/lIaUUpRoFUsyaBZHQKhwf2+PBBR1fZQoaAZoCWgPQwiFCaNZ2b4DwJSGlFKUaBVLMmgWR0CocC5avA45dX2UKGgGaAloD0MIVDcXf9sT0b+UhpRSlGgVSzJoFkdAqG/WxKQJX3V9lChoBmgJaA9DCD6zJEBNLdW/lIaUUpRoFUsyaBZHQKhvgxzJZGN1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:203d486f02b8aa4cbd5b56bb4a19657fb4254a7789c7a8adeaae210c10f86805
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc682dc006601ea9c6bc99e5e62d66bdba218bd041fe14325234e7f197c8717d
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f53ffa000d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f539e692cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682362275383768137, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3Bcev0RJyb4c7Pq+AfPfvkc1vr+YMt2/CPWqv9AR2D+G+ZI/0NlxPT8KyL+EQtO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]]", "desired_goal": "[[-0.61755157 -0.3931371 -0.49008262]\n [-0.43740085 -1.4860009 -1.7281065 ]\n [-1.3356028 1.6880436 1.1482399 ]\n [ 0.05904561 -1.5628127 -1.6504674 ]]", "observation": "[[4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1KQOvr6ljb13jwo9rXKePVh3Fr5xR5I9hKAqOxScqb24gSM+jVwrPYG+WL0ueFY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13930064 -0.06916378 0.03382822]\n [ 0.07736716 -0.14693964 0.07142533]\n [ 0.00260356 -0.08281723 0.15967453]\n [ 0.04183631 -0.05291605 0.20944282]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ341Bwjm8b+UhpRSlIwBbJRLMowBdJRHQKhQmlDWsil1fZQoaAZoCWgPQwhaZhGKrSDnv5SGlFKUaBVLMmgWR0CoUEkFwDNhdX2UKGgGaAloD0MIMnGrIAY64L+UhpRSlGgVSzJoFkdAqE/xeTmnwXV9lChoBmgJaA9DCI4EGmzqPO+/lIaUUpRoFUsyaBZHQKhPnjp9qlB1fZQoaAZoCWgPQwjYn8TnTvDzv5SGlFKUaBVLMmgWR0CoUlgFgUlBdX2UKGgGaAloD0MIN+Fembcq8r+UhpRSlGgVSzJoFkdAqFIGxt52QnV9lChoBmgJaA9DCHxGIjSCzfm/lIaUUpRoFUsyaBZHQKhRryPuG9J1fZQoaAZoCWgPQwhXCoFc4sjWv5SGlFKUaBVLMmgWR0CoUVuO801qdX2UKGgGaAloD0MI3lhQGJTp8b+UhpRSlGgVSzJoFkdAqFQuYc/+sHV9lChoBmgJaA9DCKpGrwYozfC/lIaUUpRoFUsyaBZHQKhT3RsMy8B1fZQoaAZoCWgPQwhI3jmUoSrjv5SGlFKUaBVLMmgWR0CoU4V/Ue+3dX2UKGgGaAloD0MIwqVjzjN2+b+UhpRSlGgVSzJoFkdAqFMx+8XenHV9lChoBmgJaA9DCCb752nA4Pe/lIaUUpRoFUsyaBZHQKhWWNKAavR1fZQoaAZoCWgPQwifknNiD639v5SGlFKUaBVLMmgWR0CoVge4b0e2dX2UKGgGaAloD0MIR+Umammu+7+UhpRSlGgVSzJoFkdAqFWwFNcnmnV9lChoBmgJaA9DCJc7M8Fwbve/lIaUUpRoFUsyaBZHQKhVXeMyaeB1fZQoaAZoCWgPQwgeNpGZC9z4v5SGlFKUaBVLMmgWR0CoWEpFb3XadX2UKGgGaAloD0MIyJbl6zL87b+UhpRSlGgVSzJoFkdAqFf6DK5kLHV9lChoBmgJaA9DCM0FLo81o/S/lIaUUpRoFUsyaBZHQKhXolKsdT51fZQoaAZoCWgPQwjo9LwbCwoEwJSGlFKUaBVLMmgWR0CoV08MuvlmdX2UKGgGaAloD0MIbLHbZ5VZ8L+UhpRSlGgVSzJoFkdAqFojCBPKuHV9lChoBmgJaA9DCBZod0gxwOq/lIaUUpRoFUsyaBZHQKhZ0M6RyOt1fZQoaAZoCWgPQwhrtvKS/wnzv5SGlFKUaBVLMmgWR0CoWXj4pMHsdX2UKGgGaAloD0MITUnW4eiq8b+UhpRSlGgVSzJoFkdAqFkkiD/VAnV9lChoBmgJaA9DCP1Okxlv6/G/lIaUUpRoFUsyaBZHQKhbQcFQl8h1fZQoaAZoCWgPQwiJCWr4Fpbwv5SGlFKUaBVLMmgWR0CoWu/eUILPdX2UKGgGaAloD0MIrJFdaRmp9b+UhpRSlGgVSzJoFkdAqFqXRPXTVnV9lChoBmgJaA9DCPnZyHVTSuu/lIaUUpRoFUsyaBZHQKhaQtsenyd1fZQoaAZoCWgPQwg9tmXAWUrgv5SGlFKUaBVLMmgWR0CoXFR8UmD2dX2UKGgGaAloD0MIoMN8eQH257+UhpRSlGgVSzJoFkdAqFwCVII4VHV9lChoBmgJaA9DCAKDpE+rqPO/lIaUUpRoFUsyaBZHQKhbqbVBlc11fZQoaAZoCWgPQwiQLcvXZXjhv5SGlFKUaBVLMmgWR0CoW1VBt1p1dX2UKGgGaAloD0MIPQrXo3A98L+UhpRSlGgVSzJoFkdAqF1ztgKF7HV9lChoBmgJaA9DCEP/BBcrKvm/lIaUUpRoFUsyaBZHQKhdIZm7J4l1fZQoaAZoCWgPQwh8SPje36DXv5SGlFKUaBVLMmgWR0CoXMkfs/pudX2UKGgGaAloD0MIzcggdxFm+r+UhpRSlGgVSzJoFkdAqFx0uJ1q33V9lChoBmgJaA9DCMsr19tmquK/lIaUUpRoFUsyaBZHQKheh/2kBS11fZQoaAZoCWgPQwhpccYwJ+jqv5SGlFKUaBVLMmgWR0CoXjXEIgNgdX2UKGgGaAloD0MIiBBXzt4Z5L+UhpRSlGgVSzJoFkdAqF3dCqp97XV9lChoBmgJaA9DCKM883LYfee/lIaUUpRoFUsyaBZHQKhdiIeo1k11fZQoaAZoCWgPQwhKQiJt40/dv5SGlFKUaBVLMmgWR0CoX6aPsAvMdX2UKGgGaAloD0MIEwznGmbo8b+UhpRSlGgVSzJoFkdAqF9Ua/ATI3V9lChoBmgJaA9DCF1Std0EX+y/lIaUUpRoFUsyaBZHQKhe+9nK4hF1fZQoaAZoCWgPQwhdMSO8PYjkv5SGlFKUaBVLMmgWR0CoXqd7ngYQdX2UKGgGaAloD0MIGXYYk/7e8L+UhpRSlGgVSzJoFkdAqGC/SH/LknV9lChoBmgJaA9DCFjhlo+kpP6/lIaUUpRoFUsyaBZHQKhgbSJj2Bd1fZQoaAZoCWgPQwhi2cwhqUXwv5SGlFKUaBVLMmgWR0CoYBRoIv8JdX2UKGgGaAloD0MIXVFKCFYV+L+UhpRSlGgVSzJoFkdAqF+/6Eal13V9lChoBmgJaA9DCLgFS3UBLwLAlIaUUpRoFUsyaBZHQKhh1u0kWyl1fZQoaAZoCWgPQwjt1jIZjgcFwJSGlFKUaBVLMmgWR0CoYYSGrS3LdX2UKGgGaAloD0MIobyPozny+L+UhpRSlGgVSzJoFkdAqGEr6LwWnHV9lChoBmgJaA9DCOC8OPHVTvC/lIaUUpRoFUsyaBZHQKhg15fMOgB1fZQoaAZoCWgPQwg8vVKWIQ7vv5SGlFKUaBVLMmgWR0CoYupo9LYgdX2UKGgGaAloD0MIwHYwYp8A47+UhpRSlGgVSzJoFkdAqGKYHTqjanV9lChoBmgJaA9DCJ4oCYm0De2/lIaUUpRoFUsyaBZHQKhiP2dupCN1fZQoaAZoCWgPQwgb8WQ3M3rhv5SGlFKUaBVLMmgWR0CoYerYGt6pdX2UKGgGaAloD0MIDmsqi8IuAsCUhpRSlGgVSzJoFkdAqGQlv60pmXV9lChoBmgJaA9DCGcLCK2H7/O/lIaUUpRoFUsyaBZHQKhj06d1+y91fZQoaAZoCWgPQwhMGTigpav/v5SGlFKUaBVLMmgWR0CoY3vHT7VKdX2UKGgGaAloD0MIHLEWnwJg6b+UhpRSlGgVSzJoFkdAqGMnV5KODXV9lChoBmgJaA9DCNaO4hx19Ou/lIaUUpRoFUsyaBZHQKhlTDiwSrZ1fZQoaAZoCWgPQwg8akyIuST2v5SGlFKUaBVLMmgWR0CoZPp4SpR5dX2UKGgGaAloD0MI7C5QUmCB67+UhpRSlGgVSzJoFkdAqGSiynk1dnV9lChoBmgJaA9DCI0JMZdUbdW/lIaUUpRoFUsyaBZHQKhkTwd8zAN1fZQoaAZoCWgPQwjVB5J3DuX5v5SGlFKUaBVLMmgWR0CoZmdRrJr+dX2UKGgGaAloD0MICJChYweV6L+UhpRSlGgVSzJoFkdAqGYVFWn0kHV9lChoBmgJaA9DCG8PQkC+hOO/lIaUUpRoFUsyaBZHQKhlvILgGbF1fZQoaAZoCWgPQwjlRpG1hhIGwJSGlFKUaBVLMmgWR0CoZWfbTMJQdX2UKGgGaAloD0MIZXCUvDqHAcCUhpRSlGgVSzJoFkdAqGeGI0qH5HV9lChoBmgJaA9DCDjYmxiSEwHAlIaUUpRoFUsyaBZHQKhnM/r0J4V1fZQoaAZoCWgPQwgkuJGyRXIQwJSGlFKUaBVLMmgWR0CoZttZeRgadX2UKGgGaAloD0MIMNeiBWjb7b+UhpRSlGgVSzJoFkdAqGaG4AjptHV9lChoBmgJaA9DCEOPGD23EPS/lIaUUpRoFUsyaBZHQKhontm+TNd1fZQoaAZoCWgPQwhJTbuYZrrwv5SGlFKUaBVLMmgWR0CoaEysr/bTdX2UKGgGaAloD0MIYd7jTBO28b+UhpRSlGgVSzJoFkdAqGf0RnOB2HV9lChoBmgJaA9DCFqAttWss/a/lIaUUpRoFUsyaBZHQKhnn9w3o9t1fZQoaAZoCWgPQwgNx/MZUG/iv5SGlFKUaBVLMmgWR0Coab3VLBbfdX2UKGgGaAloD0MI8pcW9Umu+7+UhpRSlGgVSzJoFkdAqGlrpxFRYXV9lChoBmgJaA9DCNu+R/31yvO/lIaUUpRoFUsyaBZHQKhpEy9mHxl1fZQoaAZoCWgPQwhj00ohkIvwv5SGlFKUaBVLMmgWR0CoaL7MHKOldX2UKGgGaAloD0MI2SH+YUvPBsCUhpRSlGgVSzJoFkdAqGrIq0+kg3V9lChoBmgJaA9DCJwZ/Wg4ZQvAlIaUUpRoFUsyaBZHQKhqdqveP7x1fZQoaAZoCWgPQwhhinJp/KIMwJSGlFKUaBVLMmgWR0Coah4ku6ErdX2UKGgGaAloD0MIzF8hc2VQ77+UhpRSlGgVSzJoFkdAqGnJgqmTDHV9lChoBmgJaA9DCAJhp1g1iOK/lIaUUpRoFUsyaBZHQKhr3aPjn3d1fZQoaAZoCWgPQwg8TtGRXP7lv5SGlFKUaBVLMmgWR0Coa4uQhfShdX2UKGgGaAloD0MI0clS6/3G7b+UhpRSlGgVSzJoFkdAqGsy2phnanV9lChoBmgJaA9DCG/XS1MEWATAlIaUUpRoFUsyaBZHQKhq3k5p8F91fZQoaAZoCWgPQwjpD808uSb8v5SGlFKUaBVLMmgWR0CobPp/PPcBdX2UKGgGaAloD0MIbeaQ1EJJ67+UhpRSlGgVSzJoFkdAqGyoTbnHN3V9lChoBmgJaA9DCAMlBRbAVPy/lIaUUpRoFUsyaBZHQKhsT8l5WzZ1fZQoaAZoCWgPQwjkZU0s8BXgv5SGlFKUaBVLMmgWR0Coa/trsSkCdX2UKGgGaAloD0MIQGoTJ/e78L+UhpRSlGgVSzJoFkdAqG50a86FNHV9lChoBmgJaA9DCB8r+G2IMfC/lIaUUpRoFUsyaBZHQKhuIvpQk5Z1fZQoaAZoCWgPQwghkiHH1rPrv5SGlFKUaBVLMmgWR0CobctN8E3bdX2UKGgGaAloD0MIZyeDo+TV4b+UhpRSlGgVSzJoFkdAqG13xhDw6XV9lChoBmgJaA9DCHAKKxVUlPi/lIaUUpRoFUsyaBZHQKhwf2+PBBR1fZQoaAZoCWgPQwiFCaNZ2b4DwJSGlFKUaBVLMmgWR0CocC5avA45dX2UKGgGaAloD0MIVDcXf9sT0b+UhpRSlGgVSzJoFkdAqG/WxKQJX3V9lChoBmgJaA9DCD6zJEBNLdW/lIaUUpRoFUsyaBZHQKhvgxzJZGN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (335 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.9210160609800369, "std_reward": 0.6346473506720339, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T19:45:51.946668"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c26b4719e3c314480188925e39bd7f3b32c37739b6d1637ed4974c20856f9bc
|
3 |
+
size 2381
|