bjarlestam commited on
Commit
7502f2d
·
1 Parent(s): 89de7ed

Rock n roll

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.92 +/- 0.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2da62abe50b54955a1690dce0f5ad18b2f5136adf7be1cb8922b407fa0815d5
3
+ size 108106
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f53ffa000d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f539e692cc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1682362275383768137,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3Bcev0RJyb4c7Pq+AfPfvkc1vr+YMt2/CPWqv9AR2D+G+ZI/0NlxPT8KyL+EQtO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTqUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]]",
38
+ "desired_goal": "[[-0.61755157 -0.3931371 -0.49008262]\n [-0.43740085 -1.4860009 -1.7281065 ]\n [-1.3356028 1.6880436 1.1482399 ]\n [ 0.05904561 -1.5628127 -1.6504674 ]]",
39
+ "observation": "[[4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1KQOvr6ljb13jwo9rXKePVh3Fr5xR5I9hKAqOxScqb24gSM+jVwrPYG+WL0ueFY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.13930064 -0.06916378 0.03382822]\n [ 0.07736716 -0.14693964 0.07142533]\n [ 0.00260356 -0.08281723 0.15967453]\n [ 0.04183631 -0.05291605 0.20944282]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ341Bwjm8b+UhpRSlIwBbJRLMowBdJRHQKhQmlDWsil1fZQoaAZoCWgPQwhaZhGKrSDnv5SGlFKUaBVLMmgWR0CoUEkFwDNhdX2UKGgGaAloD0MIMnGrIAY64L+UhpRSlGgVSzJoFkdAqE/xeTmnwXV9lChoBmgJaA9DCI4EGmzqPO+/lIaUUpRoFUsyaBZHQKhPnjp9qlB1fZQoaAZoCWgPQwjYn8TnTvDzv5SGlFKUaBVLMmgWR0CoUlgFgUlBdX2UKGgGaAloD0MIN+Fembcq8r+UhpRSlGgVSzJoFkdAqFIGxt52QnV9lChoBmgJaA9DCHxGIjSCzfm/lIaUUpRoFUsyaBZHQKhRryPuG9J1fZQoaAZoCWgPQwhXCoFc4sjWv5SGlFKUaBVLMmgWR0CoUVuO801qdX2UKGgGaAloD0MI3lhQGJTp8b+UhpRSlGgVSzJoFkdAqFQuYc/+sHV9lChoBmgJaA9DCKpGrwYozfC/lIaUUpRoFUsyaBZHQKhT3RsMy8B1fZQoaAZoCWgPQwhI3jmUoSrjv5SGlFKUaBVLMmgWR0CoU4V/Ue+3dX2UKGgGaAloD0MIwqVjzjN2+b+UhpRSlGgVSzJoFkdAqFMx+8XenHV9lChoBmgJaA9DCCb752nA4Pe/lIaUUpRoFUsyaBZHQKhWWNKAavR1fZQoaAZoCWgPQwifknNiD639v5SGlFKUaBVLMmgWR0CoVge4b0e2dX2UKGgGaAloD0MIR+Umammu+7+UhpRSlGgVSzJoFkdAqFWwFNcnmnV9lChoBmgJaA9DCJc7M8Fwbve/lIaUUpRoFUsyaBZHQKhVXeMyaeB1fZQoaAZoCWgPQwgeNpGZC9z4v5SGlFKUaBVLMmgWR0CoWEpFb3XadX2UKGgGaAloD0MIyJbl6zL87b+UhpRSlGgVSzJoFkdAqFf6DK5kLHV9lChoBmgJaA9DCM0FLo81o/S/lIaUUpRoFUsyaBZHQKhXolKsdT51fZQoaAZoCWgPQwjo9LwbCwoEwJSGlFKUaBVLMmgWR0CoV08MuvlmdX2UKGgGaAloD0MIbLHbZ5VZ8L+UhpRSlGgVSzJoFkdAqFojCBPKuHV9lChoBmgJaA9DCBZod0gxwOq/lIaUUpRoFUsyaBZHQKhZ0M6RyOt1fZQoaAZoCWgPQwhrtvKS/wnzv5SGlFKUaBVLMmgWR0CoWXj4pMHsdX2UKGgGaAloD0MITUnW4eiq8b+UhpRSlGgVSzJoFkdAqFkkiD/VAnV9lChoBmgJaA9DCP1Okxlv6/G/lIaUUpRoFUsyaBZHQKhbQcFQl8h1fZQoaAZoCWgPQwiJCWr4Fpbwv5SGlFKUaBVLMmgWR0CoWu/eUILPdX2UKGgGaAloD0MIrJFdaRmp9b+UhpRSlGgVSzJoFkdAqFqXRPXTVnV9lChoBmgJaA9DCPnZyHVTSuu/lIaUUpRoFUsyaBZHQKhaQtsenyd1fZQoaAZoCWgPQwg9tmXAWUrgv5SGlFKUaBVLMmgWR0CoXFR8UmD2dX2UKGgGaAloD0MIoMN8eQH257+UhpRSlGgVSzJoFkdAqFwCVII4VHV9lChoBmgJaA9DCAKDpE+rqPO/lIaUUpRoFUsyaBZHQKhbqbVBlc11fZQoaAZoCWgPQwiQLcvXZXjhv5SGlFKUaBVLMmgWR0CoW1VBt1p1dX2UKGgGaAloD0MIPQrXo3A98L+UhpRSlGgVSzJoFkdAqF1ztgKF7HV9lChoBmgJaA9DCEP/BBcrKvm/lIaUUpRoFUsyaBZHQKhdIZm7J4l1fZQoaAZoCWgPQwh8SPje36DXv5SGlFKUaBVLMmgWR0CoXMkfs/pudX2UKGgGaAloD0MIzcggdxFm+r+UhpRSlGgVSzJoFkdAqFx0uJ1q33V9lChoBmgJaA9DCMsr19tmquK/lIaUUpRoFUsyaBZHQKheh/2kBS11fZQoaAZoCWgPQwhpccYwJ+jqv5SGlFKUaBVLMmgWR0CoXjXEIgNgdX2UKGgGaAloD0MIiBBXzt4Z5L+UhpRSlGgVSzJoFkdAqF3dCqp97XV9lChoBmgJaA9DCKM883LYfee/lIaUUpRoFUsyaBZHQKhdiIeo1k11fZQoaAZoCWgPQwhKQiJt40/dv5SGlFKUaBVLMmgWR0CoX6aPsAvMdX2UKGgGaAloD0MIEwznGmbo8b+UhpRSlGgVSzJoFkdAqF9Ua/ATI3V9lChoBmgJaA9DCF1Std0EX+y/lIaUUpRoFUsyaBZHQKhe+9nK4hF1fZQoaAZoCWgPQwhdMSO8PYjkv5SGlFKUaBVLMmgWR0CoXqd7ngYQdX2UKGgGaAloD0MIGXYYk/7e8L+UhpRSlGgVSzJoFkdAqGC/SH/LknV9lChoBmgJaA9DCFjhlo+kpP6/lIaUUpRoFUsyaBZHQKhgbSJj2Bd1fZQoaAZoCWgPQwhi2cwhqUXwv5SGlFKUaBVLMmgWR0CoYBRoIv8JdX2UKGgGaAloD0MIXVFKCFYV+L+UhpRSlGgVSzJoFkdAqF+/6Eal13V9lChoBmgJaA9DCLgFS3UBLwLAlIaUUpRoFUsyaBZHQKhh1u0kWyl1fZQoaAZoCWgPQwjt1jIZjgcFwJSGlFKUaBVLMmgWR0CoYYSGrS3LdX2UKGgGaAloD0MIobyPozny+L+UhpRSlGgVSzJoFkdAqGEr6LwWnHV9lChoBmgJaA9DCOC8OPHVTvC/lIaUUpRoFUsyaBZHQKhg15fMOgB1fZQoaAZoCWgPQwg8vVKWIQ7vv5SGlFKUaBVLMmgWR0CoYupo9LYgdX2UKGgGaAloD0MIwHYwYp8A47+UhpRSlGgVSzJoFkdAqGKYHTqjanV9lChoBmgJaA9DCJ4oCYm0De2/lIaUUpRoFUsyaBZHQKhiP2dupCN1fZQoaAZoCWgPQwgb8WQ3M3rhv5SGlFKUaBVLMmgWR0CoYerYGt6pdX2UKGgGaAloD0MIDmsqi8IuAsCUhpRSlGgVSzJoFkdAqGQlv60pmXV9lChoBmgJaA9DCGcLCK2H7/O/lIaUUpRoFUsyaBZHQKhj06d1+y91fZQoaAZoCWgPQwhMGTigpav/v5SGlFKUaBVLMmgWR0CoY3vHT7VKdX2UKGgGaAloD0MIHLEWnwJg6b+UhpRSlGgVSzJoFkdAqGMnV5KODXV9lChoBmgJaA9DCNaO4hx19Ou/lIaUUpRoFUsyaBZHQKhlTDiwSrZ1fZQoaAZoCWgPQwg8akyIuST2v5SGlFKUaBVLMmgWR0CoZPp4SpR5dX2UKGgGaAloD0MI7C5QUmCB67+UhpRSlGgVSzJoFkdAqGSiynk1dnV9lChoBmgJaA9DCI0JMZdUbdW/lIaUUpRoFUsyaBZHQKhkTwd8zAN1fZQoaAZoCWgPQwjVB5J3DuX5v5SGlFKUaBVLMmgWR0CoZmdRrJr+dX2UKGgGaAloD0MICJChYweV6L+UhpRSlGgVSzJoFkdAqGYVFWn0kHV9lChoBmgJaA9DCG8PQkC+hOO/lIaUUpRoFUsyaBZHQKhlvILgGbF1fZQoaAZoCWgPQwjlRpG1hhIGwJSGlFKUaBVLMmgWR0CoZWfbTMJQdX2UKGgGaAloD0MIZXCUvDqHAcCUhpRSlGgVSzJoFkdAqGeGI0qH5HV9lChoBmgJaA9DCDjYmxiSEwHAlIaUUpRoFUsyaBZHQKhnM/r0J4V1fZQoaAZoCWgPQwgkuJGyRXIQwJSGlFKUaBVLMmgWR0CoZttZeRgadX2UKGgGaAloD0MIMNeiBWjb7b+UhpRSlGgVSzJoFkdAqGaG4AjptHV9lChoBmgJaA9DCEOPGD23EPS/lIaUUpRoFUsyaBZHQKhontm+TNd1fZQoaAZoCWgPQwhJTbuYZrrwv5SGlFKUaBVLMmgWR0CoaEysr/bTdX2UKGgGaAloD0MIYd7jTBO28b+UhpRSlGgVSzJoFkdAqGf0RnOB2HV9lChoBmgJaA9DCFqAttWss/a/lIaUUpRoFUsyaBZHQKhnn9w3o9t1fZQoaAZoCWgPQwgNx/MZUG/iv5SGlFKUaBVLMmgWR0Coab3VLBbfdX2UKGgGaAloD0MI8pcW9Umu+7+UhpRSlGgVSzJoFkdAqGlrpxFRYXV9lChoBmgJaA9DCNu+R/31yvO/lIaUUpRoFUsyaBZHQKhpEy9mHxl1fZQoaAZoCWgPQwhj00ohkIvwv5SGlFKUaBVLMmgWR0CoaL7MHKOldX2UKGgGaAloD0MI2SH+YUvPBsCUhpRSlGgVSzJoFkdAqGrIq0+kg3V9lChoBmgJaA9DCJwZ/Wg4ZQvAlIaUUpRoFUsyaBZHQKhqdqveP7x1fZQoaAZoCWgPQwhhinJp/KIMwJSGlFKUaBVLMmgWR0Coah4ku6ErdX2UKGgGaAloD0MIzF8hc2VQ77+UhpRSlGgVSzJoFkdAqGnJgqmTDHV9lChoBmgJaA9DCAJhp1g1iOK/lIaUUpRoFUsyaBZHQKhr3aPjn3d1fZQoaAZoCWgPQwg8TtGRXP7lv5SGlFKUaBVLMmgWR0Coa4uQhfShdX2UKGgGaAloD0MI0clS6/3G7b+UhpRSlGgVSzJoFkdAqGsy2phnanV9lChoBmgJaA9DCG/XS1MEWATAlIaUUpRoFUsyaBZHQKhq3k5p8F91fZQoaAZoCWgPQwjpD808uSb8v5SGlFKUaBVLMmgWR0CobPp/PPcBdX2UKGgGaAloD0MIbeaQ1EJJ67+UhpRSlGgVSzJoFkdAqGyoTbnHN3V9lChoBmgJaA9DCAMlBRbAVPy/lIaUUpRoFUsyaBZHQKhsT8l5WzZ1fZQoaAZoCWgPQwjkZU0s8BXgv5SGlFKUaBVLMmgWR0Coa/trsSkCdX2UKGgGaAloD0MIQGoTJ/e78L+UhpRSlGgVSzJoFkdAqG50a86FNHV9lChoBmgJaA9DCB8r+G2IMfC/lIaUUpRoFUsyaBZHQKhuIvpQk5Z1fZQoaAZoCWgPQwghkiHH1rPrv5SGlFKUaBVLMmgWR0CobctN8E3bdX2UKGgGaAloD0MIZyeDo+TV4b+UhpRSlGgVSzJoFkdAqG13xhDw6XV9lChoBmgJaA9DCHAKKxVUlPi/lIaUUpRoFUsyaBZHQKhwf2+PBBR1fZQoaAZoCWgPQwiFCaNZ2b4DwJSGlFKUaBVLMmgWR0CocC5avA45dX2UKGgGaAloD0MIVDcXf9sT0b+UhpRSlGgVSzJoFkdAqG/WxKQJX3V9lChoBmgJaA9DCD6zJEBNLdW/lIaUUpRoFUsyaBZHQKhvgxzJZGN1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203d486f02b8aa4cbd5b56bb4a19657fb4254a7789c7a8adeaae210c10f86805
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc682dc006601ea9c6bc99e5e62d66bdba218bd041fe14325234e7f197c8717d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f53ffa000d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f539e692cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682362275383768137, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/OD3VPlELEzy2xQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3Bcev0RJyb4c7Pq+AfPfvkc1vr+YMt2/CPWqv9AR2D+G+ZI/0NlxPT8KyL+EQtO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTo4PdU+UQsTPLbFDj8zikk5+/JlO1MMLTqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]\n [0.4164827 0.00897487 0.5577043 ]]", "desired_goal": "[[-0.61755157 -0.3931371 -0.49008262]\n [-0.43740085 -1.4860009 -1.7281065 ]\n [-1.3356028 1.6880436 1.1482399 ]\n [ 0.05904561 -1.5628127 -1.6504674 ]]", "observation": "[[4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]\n [4.1648269e-01 8.9748660e-03 5.5770433e-01 1.9220337e-04 3.5087455e-03\n 6.6012627e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1KQOvr6ljb13jwo9rXKePVh3Fr5xR5I9hKAqOxScqb24gSM+jVwrPYG+WL0ueFY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13930064 -0.06916378 0.03382822]\n [ 0.07736716 -0.14693964 0.07142533]\n [ 0.00260356 -0.08281723 0.15967453]\n [ 0.04183631 -0.05291605 0.20944282]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ341Bwjm8b+UhpRSlIwBbJRLMowBdJRHQKhQmlDWsil1fZQoaAZoCWgPQwhaZhGKrSDnv5SGlFKUaBVLMmgWR0CoUEkFwDNhdX2UKGgGaAloD0MIMnGrIAY64L+UhpRSlGgVSzJoFkdAqE/xeTmnwXV9lChoBmgJaA9DCI4EGmzqPO+/lIaUUpRoFUsyaBZHQKhPnjp9qlB1fZQoaAZoCWgPQwjYn8TnTvDzv5SGlFKUaBVLMmgWR0CoUlgFgUlBdX2UKGgGaAloD0MIN+Fembcq8r+UhpRSlGgVSzJoFkdAqFIGxt52QnV9lChoBmgJaA9DCHxGIjSCzfm/lIaUUpRoFUsyaBZHQKhRryPuG9J1fZQoaAZoCWgPQwhXCoFc4sjWv5SGlFKUaBVLMmgWR0CoUVuO801qdX2UKGgGaAloD0MI3lhQGJTp8b+UhpRSlGgVSzJoFkdAqFQuYc/+sHV9lChoBmgJaA9DCKpGrwYozfC/lIaUUpRoFUsyaBZHQKhT3RsMy8B1fZQoaAZoCWgPQwhI3jmUoSrjv5SGlFKUaBVLMmgWR0CoU4V/Ue+3dX2UKGgGaAloD0MIwqVjzjN2+b+UhpRSlGgVSzJoFkdAqFMx+8XenHV9lChoBmgJaA9DCCb752nA4Pe/lIaUUpRoFUsyaBZHQKhWWNKAavR1fZQoaAZoCWgPQwifknNiD639v5SGlFKUaBVLMmgWR0CoVge4b0e2dX2UKGgGaAloD0MIR+Umammu+7+UhpRSlGgVSzJoFkdAqFWwFNcnmnV9lChoBmgJaA9DCJc7M8Fwbve/lIaUUpRoFUsyaBZHQKhVXeMyaeB1fZQoaAZoCWgPQwgeNpGZC9z4v5SGlFKUaBVLMmgWR0CoWEpFb3XadX2UKGgGaAloD0MIyJbl6zL87b+UhpRSlGgVSzJoFkdAqFf6DK5kLHV9lChoBmgJaA9DCM0FLo81o/S/lIaUUpRoFUsyaBZHQKhXolKsdT51fZQoaAZoCWgPQwjo9LwbCwoEwJSGlFKUaBVLMmgWR0CoV08MuvlmdX2UKGgGaAloD0MIbLHbZ5VZ8L+UhpRSlGgVSzJoFkdAqFojCBPKuHV9lChoBmgJaA9DCBZod0gxwOq/lIaUUpRoFUsyaBZHQKhZ0M6RyOt1fZQoaAZoCWgPQwhrtvKS/wnzv5SGlFKUaBVLMmgWR0CoWXj4pMHsdX2UKGgGaAloD0MITUnW4eiq8b+UhpRSlGgVSzJoFkdAqFkkiD/VAnV9lChoBmgJaA9DCP1Okxlv6/G/lIaUUpRoFUsyaBZHQKhbQcFQl8h1fZQoaAZoCWgPQwiJCWr4Fpbwv5SGlFKUaBVLMmgWR0CoWu/eUILPdX2UKGgGaAloD0MIrJFdaRmp9b+UhpRSlGgVSzJoFkdAqFqXRPXTVnV9lChoBmgJaA9DCPnZyHVTSuu/lIaUUpRoFUsyaBZHQKhaQtsenyd1fZQoaAZoCWgPQwg9tmXAWUrgv5SGlFKUaBVLMmgWR0CoXFR8UmD2dX2UKGgGaAloD0MIoMN8eQH257+UhpRSlGgVSzJoFkdAqFwCVII4VHV9lChoBmgJaA9DCAKDpE+rqPO/lIaUUpRoFUsyaBZHQKhbqbVBlc11fZQoaAZoCWgPQwiQLcvXZXjhv5SGlFKUaBVLMmgWR0CoW1VBt1p1dX2UKGgGaAloD0MIPQrXo3A98L+UhpRSlGgVSzJoFkdAqF1ztgKF7HV9lChoBmgJaA9DCEP/BBcrKvm/lIaUUpRoFUsyaBZHQKhdIZm7J4l1fZQoaAZoCWgPQwh8SPje36DXv5SGlFKUaBVLMmgWR0CoXMkfs/pudX2UKGgGaAloD0MIzcggdxFm+r+UhpRSlGgVSzJoFkdAqFx0uJ1q33V9lChoBmgJaA9DCMsr19tmquK/lIaUUpRoFUsyaBZHQKheh/2kBS11fZQoaAZoCWgPQwhpccYwJ+jqv5SGlFKUaBVLMmgWR0CoXjXEIgNgdX2UKGgGaAloD0MIiBBXzt4Z5L+UhpRSlGgVSzJoFkdAqF3dCqp97XV9lChoBmgJaA9DCKM883LYfee/lIaUUpRoFUsyaBZHQKhdiIeo1k11fZQoaAZoCWgPQwhKQiJt40/dv5SGlFKUaBVLMmgWR0CoX6aPsAvMdX2UKGgGaAloD0MIEwznGmbo8b+UhpRSlGgVSzJoFkdAqF9Ua/ATI3V9lChoBmgJaA9DCF1Std0EX+y/lIaUUpRoFUsyaBZHQKhe+9nK4hF1fZQoaAZoCWgPQwhdMSO8PYjkv5SGlFKUaBVLMmgWR0CoXqd7ngYQdX2UKGgGaAloD0MIGXYYk/7e8L+UhpRSlGgVSzJoFkdAqGC/SH/LknV9lChoBmgJaA9DCFjhlo+kpP6/lIaUUpRoFUsyaBZHQKhgbSJj2Bd1fZQoaAZoCWgPQwhi2cwhqUXwv5SGlFKUaBVLMmgWR0CoYBRoIv8JdX2UKGgGaAloD0MIXVFKCFYV+L+UhpRSlGgVSzJoFkdAqF+/6Eal13V9lChoBmgJaA9DCLgFS3UBLwLAlIaUUpRoFUsyaBZHQKhh1u0kWyl1fZQoaAZoCWgPQwjt1jIZjgcFwJSGlFKUaBVLMmgWR0CoYYSGrS3LdX2UKGgGaAloD0MIobyPozny+L+UhpRSlGgVSzJoFkdAqGEr6LwWnHV9lChoBmgJaA9DCOC8OPHVTvC/lIaUUpRoFUsyaBZHQKhg15fMOgB1fZQoaAZoCWgPQwg8vVKWIQ7vv5SGlFKUaBVLMmgWR0CoYupo9LYgdX2UKGgGaAloD0MIwHYwYp8A47+UhpRSlGgVSzJoFkdAqGKYHTqjanV9lChoBmgJaA9DCJ4oCYm0De2/lIaUUpRoFUsyaBZHQKhiP2dupCN1fZQoaAZoCWgPQwgb8WQ3M3rhv5SGlFKUaBVLMmgWR0CoYerYGt6pdX2UKGgGaAloD0MIDmsqi8IuAsCUhpRSlGgVSzJoFkdAqGQlv60pmXV9lChoBmgJaA9DCGcLCK2H7/O/lIaUUpRoFUsyaBZHQKhj06d1+y91fZQoaAZoCWgPQwhMGTigpav/v5SGlFKUaBVLMmgWR0CoY3vHT7VKdX2UKGgGaAloD0MIHLEWnwJg6b+UhpRSlGgVSzJoFkdAqGMnV5KODXV9lChoBmgJaA9DCNaO4hx19Ou/lIaUUpRoFUsyaBZHQKhlTDiwSrZ1fZQoaAZoCWgPQwg8akyIuST2v5SGlFKUaBVLMmgWR0CoZPp4SpR5dX2UKGgGaAloD0MI7C5QUmCB67+UhpRSlGgVSzJoFkdAqGSiynk1dnV9lChoBmgJaA9DCI0JMZdUbdW/lIaUUpRoFUsyaBZHQKhkTwd8zAN1fZQoaAZoCWgPQwjVB5J3DuX5v5SGlFKUaBVLMmgWR0CoZmdRrJr+dX2UKGgGaAloD0MICJChYweV6L+UhpRSlGgVSzJoFkdAqGYVFWn0kHV9lChoBmgJaA9DCG8PQkC+hOO/lIaUUpRoFUsyaBZHQKhlvILgGbF1fZQoaAZoCWgPQwjlRpG1hhIGwJSGlFKUaBVLMmgWR0CoZWfbTMJQdX2UKGgGaAloD0MIZXCUvDqHAcCUhpRSlGgVSzJoFkdAqGeGI0qH5HV9lChoBmgJaA9DCDjYmxiSEwHAlIaUUpRoFUsyaBZHQKhnM/r0J4V1fZQoaAZoCWgPQwgkuJGyRXIQwJSGlFKUaBVLMmgWR0CoZttZeRgadX2UKGgGaAloD0MIMNeiBWjb7b+UhpRSlGgVSzJoFkdAqGaG4AjptHV9lChoBmgJaA9DCEOPGD23EPS/lIaUUpRoFUsyaBZHQKhontm+TNd1fZQoaAZoCWgPQwhJTbuYZrrwv5SGlFKUaBVLMmgWR0CoaEysr/bTdX2UKGgGaAloD0MIYd7jTBO28b+UhpRSlGgVSzJoFkdAqGf0RnOB2HV9lChoBmgJaA9DCFqAttWss/a/lIaUUpRoFUsyaBZHQKhnn9w3o9t1fZQoaAZoCWgPQwgNx/MZUG/iv5SGlFKUaBVLMmgWR0Coab3VLBbfdX2UKGgGaAloD0MI8pcW9Umu+7+UhpRSlGgVSzJoFkdAqGlrpxFRYXV9lChoBmgJaA9DCNu+R/31yvO/lIaUUpRoFUsyaBZHQKhpEy9mHxl1fZQoaAZoCWgPQwhj00ohkIvwv5SGlFKUaBVLMmgWR0CoaL7MHKOldX2UKGgGaAloD0MI2SH+YUvPBsCUhpRSlGgVSzJoFkdAqGrIq0+kg3V9lChoBmgJaA9DCJwZ/Wg4ZQvAlIaUUpRoFUsyaBZHQKhqdqveP7x1fZQoaAZoCWgPQwhhinJp/KIMwJSGlFKUaBVLMmgWR0Coah4ku6ErdX2UKGgGaAloD0MIzF8hc2VQ77+UhpRSlGgVSzJoFkdAqGnJgqmTDHV9lChoBmgJaA9DCAJhp1g1iOK/lIaUUpRoFUsyaBZHQKhr3aPjn3d1fZQoaAZoCWgPQwg8TtGRXP7lv5SGlFKUaBVLMmgWR0Coa4uQhfShdX2UKGgGaAloD0MI0clS6/3G7b+UhpRSlGgVSzJoFkdAqGsy2phnanV9lChoBmgJaA9DCG/XS1MEWATAlIaUUpRoFUsyaBZHQKhq3k5p8F91fZQoaAZoCWgPQwjpD808uSb8v5SGlFKUaBVLMmgWR0CobPp/PPcBdX2UKGgGaAloD0MIbeaQ1EJJ67+UhpRSlGgVSzJoFkdAqGyoTbnHN3V9lChoBmgJaA9DCAMlBRbAVPy/lIaUUpRoFUsyaBZHQKhsT8l5WzZ1fZQoaAZoCWgPQwjkZU0s8BXgv5SGlFKUaBVLMmgWR0Coa/trsSkCdX2UKGgGaAloD0MIQGoTJ/e78L+UhpRSlGgVSzJoFkdAqG50a86FNHV9lChoBmgJaA9DCB8r+G2IMfC/lIaUUpRoFUsyaBZHQKhuIvpQk5Z1fZQoaAZoCWgPQwghkiHH1rPrv5SGlFKUaBVLMmgWR0CobctN8E3bdX2UKGgGaAloD0MIZyeDo+TV4b+UhpRSlGgVSzJoFkdAqG13xhDw6XV9lChoBmgJaA9DCHAKKxVUlPi/lIaUUpRoFUsyaBZHQKhwf2+PBBR1fZQoaAZoCWgPQwiFCaNZ2b4DwJSGlFKUaBVLMmgWR0CocC5avA45dX2UKGgGaAloD0MIVDcXf9sT0b+UhpRSlGgVSzJoFkdAqG/WxKQJX3V9lChoBmgJaA9DCD6zJEBNLdW/lIaUUpRoFUsyaBZHQKhvgxzJZGN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (335 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.9210160609800369, "std_reward": 0.6346473506720339, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T19:45:51.946668"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c26b4719e3c314480188925e39bd7f3b32c37739b6d1637ed4974c20856f9bc
3
+ size 2381