bjarlestam commited on
Commit
57080ad
·
1 Parent(s): 5628636

rock n roll

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1207.03 +/- 163.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6ae3f3ca84674d2d9421c9f1dc543ce57564f12d566e1d8cd8c2fbc6b84810a
3
+ size 187993
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd904b80670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd904b80700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd904b80790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd904b80820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd904b808b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd904b80940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd904b809d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd904b80a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd904b80af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd904b80b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd904b80c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd904b80ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd904b834c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ "log_std_init": -2,
25
+ "ortho_init": false
26
+ },
27
+ "num_timesteps": 2000000,
28
+ "_total_timesteps": 2000000,
29
+ "_num_timesteps_at_start": 0,
30
+ "seed": null,
31
+ "action_noise": null,
32
+ "start_time": 1682024014799401117,
33
+ "learning_rate": 0.00096,
34
+ "tensorboard_log": null,
35
+ "lr_schedule": {
36
+ ":type:": "<class 'function'>",
37
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
38
+ },
39
+ "_last_obs": {
40
+ ":type:": "<class 'numpy.ndarray'>",
41
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMNCyL6xpcU+O0WfPokn9z2B4oW/saulvTgQzz4Nrti9a71qvukBXz8aDeg+cqSKvgzZGL/DnBfA1cDvPn5sD7+Uore/CYE2PssPDT9unYG+tO0kPhO6pD8uCqu+GjigvfSLWD/BegrAoCGhPjpICj+TD4G+RJ0vP7uJOz1Jjvm95gFNvvEtPT/jcGq+BJ6Kvs36Cb+UnHQ/vRvKvkj/T8C6XhM/foJUP/ZHDz8KVda9cMeXv4BNHj+lzOo+CZCRv3I/xz/MYnA/ELJcPoj1ez0aUpe/hqDsPqAhoT46SAo/RUjaP9Lgjr6jrh8/D9rcPuJcBEDwQ1a/30SKP2GyMr/YUI+/X/UPv/ZAK7948jw7qUJHPxgWFz5Ktaa/gCNavmkkqr9nlE+/znJBvozqEsCvEX6/EdKVOrKQFj9e/qO+GlKXv4ag7D6gIaE+OkgKP/6qFr3CZko+/3fePuAX5D6l83i/xls7v0l/eL4seIU+WABJP4uuKT+Fd6A82A2AvMfwI7++gC/AEyQIPxNQ+br9tJI+thNaPlfFjL7Do9E+1BY9PypBOUAX7VG/BWUIwPSLWD/BegrAoCGhPv327L+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
42
+ },
43
+ "_last_episode_starts": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
46
+ },
47
+ "_last_original_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAPf5a2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlHA+PQAAAACSpuu/AAAAAODJBb4AAAAAnxH2PwAAAAA9nLS9AAAAANXX4D8AAAAAt12QvQAAAADVu+u/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqdqNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLOcJD0AAAAABIjqvwAAAABHjO09AAAAABJV8z8AAAAA3vRQPQAAAAChjvA/AAAAAJZeoLwAAAAAe372vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAInULjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMamI9AAAAAAtZ2r8AAAAAislLPQAAAADWu/o/AAAAAH8k9zwAAAAAV77wPwAAAACs1rK9AAAAAGHZ/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7eVc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuf5+PQAAAADGFem/AAAAAF7jFbwAAAAAXsv0PwAAAADgKAY+AAAAAOwvAEAAAAAAcPuZPAAAAACGf+y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_episode_num": 0,
52
+ "use_sde": true,
53
+ "sde_sample_freq": -1,
54
+ "_current_progress_remaining": 0.0,
55
+ "_stats_window_size": 100,
56
+ "ep_info_buffer": {
57
+ ":type:": "<class 'collections.deque'>",
58
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbC4D7qIJuMAWyUTegDjAF0lEdAsoeCHSF493V9lChoBkdAlWKx/y5I6WgHTegDaAhHQLKIgukUKzB1fZQoaAZHQJc4EOnVG1BoB03oA2gIR0Cyio8FQl8gdX2UKGgGR0CWp1S9ugpSaAdN6ANoCEdAsorCp71Iy3V9lChoBkdAljf0kGA09GgHTegDaAhHQLKNnINEw351fZQoaAZHQJdOZD3M6iloB03oA2gIR0CyjqAJC0F9dX2UKGgGR0CV4gNY8uBdaAdN6ANoCEdAspDbzjFQ23V9lChoBkdAlqqy7kGRm2gHTegDaAhHQLKRION5t3x1fZQoaAZHQJUc3qhUR4BoB03oA2gIR0CylYn4fwI/dX2UKGgGR0CWd+iW3Sa3aAdN6ANoCEdAspaQ0Ltu1nV9lChoBkdAll6RIBikPGgHTegDaAhHQLKYkEFGG211fZQoaAZHQJbIXhuO0b9oB03oA2gIR0CymMAHu7YkdX2UKGgGR0CVOSisXBP9aAdN6ANoCEdAspugjZ+QVHV9lChoBkdAlcdvD1oQF2gHTegDaAhHQLKcrDb8FZB1fZQoaAZHQJWPTX7Lt/poB03oA2gIR0CynrHUQTVUdX2UKGgGR0CWwa8kD6nBaAdN6ANoCEdAsp7ikUKzA3V9lChoBkdAlsRy13MY/GgHTegDaAhHQLKi13mV7hN1fZQoaAZHQJXWNPci4axoB03oA2gIR0CypHP6j323dX2UKGgGR0CVVycsDnvEaAdN6ANoCEdAsqaea2F36nV9lChoBkdAkymtOh0yQGgHTegDaAhHQLKmzzo2XLN1fZQoaAZHQHS/O1jRUm5oB03oA2gIR0Cyqby4nWrfdX2UKGgGR0CWXZuqWC2+aAdN6ANoCEdAsqrFVsDW9XV9lChoBkdAlj95n+Q2dmgHTegDaAhHQLKsxNHYpUh1fZQoaAZHQJX1F8UmD15oB03oA2gIR0CyrPaT4cm0dX2UKGgGR0B4qyg9Net0aAdN6ANoCEdAsrBgWP91l3V9lChoBkdAkdPXHWBjF2gHTegDaAhHQLKx/YW+GoJ1fZQoaAZHQJPBmA3DNyJoB03oA2gIR0CytL5Ec81XdX2UKGgGR0CTQY4VymygaAdN6ANoCEdAsrTyLUCq63V9lChoBkdAkaMMJx//emgHTegDaAhHQLK3zdDIBBB1fZQoaAZHQJOuAuVX3g1oB03oA2gIR0CyuNoYR/VidX2UKGgGR0CVLaVSGahIaAdN6ANoCEdAsrrwod+5OXV9lChoBkdAkyB9hy8zymgHTegDaAhHQLK7Idq+Jxh1fZQoaAZHQHCSqsuFpPBoB03oA2gIR0CyvhOHvc8DdX2UKGgGR0CNPVF8XvYwaAdN6ANoCEdAsr+dx1gYxnV9lChoBkdAj0jenyd4FGgHTegDaAhHQLLC3Vfu1F91fZQoaAZHQJW0ir7wazhoB03oA2gIR0Cywyou9OARdX2UKGgGR0CVg+G1QZXNaAdN6ANoCEdAssYJog3cYnV9lChoBkdAk7vALmZE2GgHTegDaAhHQLLHFnBLwnZ1fZQoaAZHQJVVA30f5k9oB03oA2gIR0CyySDMeOn3dX2UKGgGR0CVJYXuVopQaAdN6ANoCEdAsslSv1UVBXV9lChoBkdAlbCAHeJpFmgHTegDaAhHQLLMPKx9oex1fZQoaAZHQJWMEkOZssRoB03oA2gIR0CyzV8pCrtFdX2UKGgGR0BpGIQ4CIUKaAdN6ANoCEdAstBsF3Y+S3V9lChoBkdAk5HGxY7q6mgHTegDaAhHQLLQupc5bQl1fZQoaAZHQJT/4l9jPOZoB03oA2gIR0Cy1CnhXKbKdX2UKGgGR0CV/s+8oQWfaAdN6ANoCEdAstU7eyiVSnV9lChoBkdAlC0+d07r9mgHTegDaAhHQLLXVIgeRxN1fZQoaAZHQJMd1CJGe+VoB03oA2gIR0Cy14YU8FINdX2UKGgGR0CUqAV2Rq46aAdN6ANoCEdAstpzIHTqjnV9lChoBkdAk1sFgMMI/2gHTegDaAhHQLLbfSCe2/l1fZQoaAZHQJXf2ZE2HcloB03oA2gIR0Cy3jcAvL5idX2UKGgGR0CSjLWNFSbZaAdN6ANoCEdAst6Ahr30w3V9lChoBkdAlIs9AC4jKWgHTegDaAhHQLLiWx7iQ1d1fZQoaAZHQIzFmi8FpwloB03oA2gIR0Cy42IGhVU/dX2UKGgGR0CSUPwSJ0nxaAdN6ANoCEdAsuVwCcPOIXV9lChoBkdAkg3dCVrylWgHTegDaAhHQLLloL8rI5p1fZQoaAZHQJMiM7YChexoB03oA2gIR0Cy6Id+so2GdX2UKGgGR0COt7GBnSOSaAdN6ANoCEdAsumP5DZ13nV9lChoBkdAkfxTT4L1EmgHTegDaAhHQLLrvyBClad1fZQoaAZHQJO6+YNRWLhoB03oA2gIR0Cy7AR6KLsKdX2UKGgGR0CSavgVoHs1aAdN6ANoCEdAsvB9zkp7TnV9lChoBkdAkCX2tITXa2gHTegDaAhHQLLxjp9ZzPt1fZQoaAZHQJIH0uYhMaloB03oA2gIR0Cy86jLfUF0dX2UKGgGR0CPK96AvtdBaAdN6ANoCEdAsvPbsY2sJnV9lChoBkdAkViFmapgkWgHTegDaAhHQLL2wYsunMt1fZQoaAZHQJWKylbeMydoB03oA2gIR0Cy99CiVSn+dX2UKGgGR0CTfnM+/xlQaAdN6ANoCEdAsvnabhFVk3V9lChoBkdAlME+vpyIYWgHTegDaAhHQLL6Ddat9x91fZQoaAZHQJXjcLRa5gBoB03oA2gIR0Cy/j6Vlf7adX2UKGgGR0CVEniGnGbTaAdN6ANoCEdAsv/VxIatLnV9lChoBkdAlj17eIl+mWgHTegDaAhHQLMB2wzch1V1fZQoaAZHQJJbMtg8bJhoB03oA2gIR0CzAgsZDRdAdX2UKGgGR0CXAuC2c8T0aAdN6ANoCEdAswTcsmOU+3V9lChoBkdAkkOOiN83M2gHTegDaAhHQLMF6LyMDOl1fZQoaAZHQJYX2RJVbRpoB03oA2gIR0CzB/C8an76dX2UKGgGR0CWEM0rbxmTaAdN6ANoCEdAswgfjZL7GnV9lChoBkdAlhaJE+gUUWgHTegDaAhHQLMLj46fapR1fZQoaAZHQJRqxZha1TloB03oA2gIR0CzDUQBHTZydX2UKGgGR0CVNedrO7g9aAdN6ANoCEdAsw/2j8DSxHV9lChoBkdAlcoL2xptamgHTegDaAhHQLMQKM7lq8F1fZQoaAZHQJO32o5xR2toB03oA2gIR0CzEv6NZNfxdX2UKGgGR0CUZqLuhK15aAdN6ANoCEdAsxQBBhQWN3V9lChoBkdAkYyTAFgUlGgHTegDaAhHQLMWEMBIWgx1fZQoaAZHQJE+0EHMUypoB03oA2gIR0CzFkIgRsdldX2UKGgGR0CTzxgxJul5aAdN6ANoCEdAsxlCnYQJ5XV9lChoBkdAkybj7655JWgHTegDaAhHQLMazagVXV91fZQoaAZHQJPx5fsu3+doB03oA2gIR0CzHfIIrvsrdX2UKGgGR0CUnzV/+bVjaAdN6ANoCEdAsx4rKGL1mXV9lChoBkdAlMygFcIJJGgHTegDaAhHQLMhDTibUgB1fZQoaAZHQJUkw94eLehoB03oA2gIR0CzIhTXnQpndX2UKGgGR0CSXQ1pj+aSaAdN6ANoCEdAsyQfZzxPPHV9lChoBkdAlOy7zK9wm2gHTegDaAhHQLMkTyCnP3V1fZQoaAZHQJODQpSaVlhoB03oA2gIR0CzJzOX3QD3dX2UKGgGR0CTBktPYWcjaAdN6ANoCEdAsyhbFQ2uPnV9lChoBkdAk8iMTi83/GgHTegDaAhHQLMrfqpcX3x1fZQoaAZHQJLemPeYUnJoB03oA2gIR0CzK9NV/+bWdX2UKGgGR0CVpPdD6WPcaAdN6ANoCEdAsy86ml67d3V9lChoBkdAkcm6guh9LGgHTegDaAhHQLMwR5Jsfq51fZQoaAZHQJN/638XN1RoB03oA2gIR0CzMlLHEMspdX2UKGgGR0CUy1oGpuMuaAdN6ANoCEdAszKDDsMRYnVlLg=="
59
+ },
60
+ "ep_success_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
63
+ },
64
+ "_n_updates": 62500,
65
+ "n_steps": 8,
66
+ "gamma": 0.99,
67
+ "gae_lambda": 0.9,
68
+ "ent_coef": 0.0,
69
+ "vf_coef": 0.4,
70
+ "max_grad_norm": 0.5,
71
+ "normalize_advantage": false,
72
+ "observation_space": {
73
+ ":type:": "<class 'gym.spaces.box.Box'>",
74
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
75
+ "dtype": "float32",
76
+ "_shape": [
77
+ 28
78
+ ],
79
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
80
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
81
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
82
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gym.spaces.box.Box'>",
87
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
88
+ "dtype": "float32",
89
+ "_shape": [
90
+ 8
91
+ ],
92
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
93
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
94
+ "bounded_below": "[ True True True True True True True True]",
95
+ "bounded_above": "[ True True True True True True True True]",
96
+ "_np_random": null
97
+ },
98
+ "n_envs": 4
99
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89ff005ca796ef693118f47827fe1600f448517acd5017c78451d4b84a04db32
3
+ size 115440
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fe36c038afdaf653fc036aecbbbbafaa7f1b8bef5e1bf3e52ad997d9a771e26
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd904b80670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd904b80700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd904b80790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd904b80820>", "_build": "<function ActorCriticPolicy._build at 0x7fd904b808b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd904b80940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd904b809d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd904b80a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd904b80af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd904b80b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd904b80c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd904b80ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd904b834c0>"}, "verbose": 1, "policy_kwargs": {"log_std_init": -2, "ortho_init": false}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682024014799401117, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMNCyL6xpcU+O0WfPokn9z2B4oW/saulvTgQzz4Nrti9a71qvukBXz8aDeg+cqSKvgzZGL/DnBfA1cDvPn5sD7+Uore/CYE2PssPDT9unYG+tO0kPhO6pD8uCqu+GjigvfSLWD/BegrAoCGhPjpICj+TD4G+RJ0vP7uJOz1Jjvm95gFNvvEtPT/jcGq+BJ6Kvs36Cb+UnHQ/vRvKvkj/T8C6XhM/foJUP/ZHDz8KVda9cMeXv4BNHj+lzOo+CZCRv3I/xz/MYnA/ELJcPoj1ez0aUpe/hqDsPqAhoT46SAo/RUjaP9Lgjr6jrh8/D9rcPuJcBEDwQ1a/30SKP2GyMr/YUI+/X/UPv/ZAK7948jw7qUJHPxgWFz5Ktaa/gCNavmkkqr9nlE+/znJBvozqEsCvEX6/EdKVOrKQFj9e/qO+GlKXv4ag7D6gIaE+OkgKP/6qFr3CZko+/3fePuAX5D6l83i/xls7v0l/eL4seIU+WABJP4uuKT+Fd6A82A2AvMfwI7++gC/AEyQIPxNQ+br9tJI+thNaPlfFjL7Do9E+1BY9PypBOUAX7VG/BWUIwPSLWD/BegrAoCGhPv327L+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAPf5a2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlHA+PQAAAACSpuu/AAAAAODJBb4AAAAAnxH2PwAAAAA9nLS9AAAAANXX4D8AAAAAt12QvQAAAADVu+u/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqdqNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLOcJD0AAAAABIjqvwAAAABHjO09AAAAABJV8z8AAAAA3vRQPQAAAAChjvA/AAAAAJZeoLwAAAAAe372vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAInULjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMamI9AAAAAAtZ2r8AAAAAislLPQAAAADWu/o/AAAAAH8k9zwAAAAAV77wPwAAAACs1rK9AAAAAGHZ/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7eVc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuf5+PQAAAADGFem/AAAAAF7jFbwAAAAAXsv0PwAAAADgKAY+AAAAAOwvAEAAAAAAcPuZPAAAAACGf+y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbC4D7qIJuMAWyUTegDjAF0lEdAsoeCHSF493V9lChoBkdAlWKx/y5I6WgHTegDaAhHQLKIgukUKzB1fZQoaAZHQJc4EOnVG1BoB03oA2gIR0Cyio8FQl8gdX2UKGgGR0CWp1S9ugpSaAdN6ANoCEdAsorCp71Iy3V9lChoBkdAljf0kGA09GgHTegDaAhHQLKNnINEw351fZQoaAZHQJdOZD3M6iloB03oA2gIR0CyjqAJC0F9dX2UKGgGR0CV4gNY8uBdaAdN6ANoCEdAspDbzjFQ23V9lChoBkdAlqqy7kGRm2gHTegDaAhHQLKRION5t3x1fZQoaAZHQJUc3qhUR4BoB03oA2gIR0CylYn4fwI/dX2UKGgGR0CWd+iW3Sa3aAdN6ANoCEdAspaQ0Ltu1nV9lChoBkdAll6RIBikPGgHTegDaAhHQLKYkEFGG211fZQoaAZHQJbIXhuO0b9oB03oA2gIR0CymMAHu7YkdX2UKGgGR0CVOSisXBP9aAdN6ANoCEdAspugjZ+QVHV9lChoBkdAlcdvD1oQF2gHTegDaAhHQLKcrDb8FZB1fZQoaAZHQJWPTX7Lt/poB03oA2gIR0CynrHUQTVUdX2UKGgGR0CWwa8kD6nBaAdN6ANoCEdAsp7ikUKzA3V9lChoBkdAlsRy13MY/GgHTegDaAhHQLKi13mV7hN1fZQoaAZHQJXWNPci4axoB03oA2gIR0CypHP6j323dX2UKGgGR0CVVycsDnvEaAdN6ANoCEdAsqaea2F36nV9lChoBkdAkymtOh0yQGgHTegDaAhHQLKmzzo2XLN1fZQoaAZHQHS/O1jRUm5oB03oA2gIR0Cyqby4nWrfdX2UKGgGR0CWXZuqWC2+aAdN6ANoCEdAsqrFVsDW9XV9lChoBkdAlj95n+Q2dmgHTegDaAhHQLKsxNHYpUh1fZQoaAZHQJX1F8UmD15oB03oA2gIR0CyrPaT4cm0dX2UKGgGR0B4qyg9Net0aAdN6ANoCEdAsrBgWP91l3V9lChoBkdAkdPXHWBjF2gHTegDaAhHQLKx/YW+GoJ1fZQoaAZHQJPBmA3DNyJoB03oA2gIR0CytL5Ec81XdX2UKGgGR0CTQY4VymygaAdN6ANoCEdAsrTyLUCq63V9lChoBkdAkaMMJx//emgHTegDaAhHQLK3zdDIBBB1fZQoaAZHQJOuAuVX3g1oB03oA2gIR0CyuNoYR/VidX2UKGgGR0CVLaVSGahIaAdN6ANoCEdAsrrwod+5OXV9lChoBkdAkyB9hy8zymgHTegDaAhHQLK7Idq+Jxh1fZQoaAZHQHCSqsuFpPBoB03oA2gIR0CyvhOHvc8DdX2UKGgGR0CNPVF8XvYwaAdN6ANoCEdAsr+dx1gYxnV9lChoBkdAj0jenyd4FGgHTegDaAhHQLLC3Vfu1F91fZQoaAZHQJW0ir7wazhoB03oA2gIR0Cywyou9OARdX2UKGgGR0CVg+G1QZXNaAdN6ANoCEdAssYJog3cYnV9lChoBkdAk7vALmZE2GgHTegDaAhHQLLHFnBLwnZ1fZQoaAZHQJVVA30f5k9oB03oA2gIR0CyySDMeOn3dX2UKGgGR0CVJYXuVopQaAdN6ANoCEdAsslSv1UVBXV9lChoBkdAlbCAHeJpFmgHTegDaAhHQLLMPKx9oex1fZQoaAZHQJWMEkOZssRoB03oA2gIR0CyzV8pCrtFdX2UKGgGR0BpGIQ4CIUKaAdN6ANoCEdAstBsF3Y+S3V9lChoBkdAk5HGxY7q6mgHTegDaAhHQLLQupc5bQl1fZQoaAZHQJT/4l9jPOZoB03oA2gIR0Cy1CnhXKbKdX2UKGgGR0CV/s+8oQWfaAdN6ANoCEdAstU7eyiVSnV9lChoBkdAlC0+d07r9mgHTegDaAhHQLLXVIgeRxN1fZQoaAZHQJMd1CJGe+VoB03oA2gIR0Cy14YU8FINdX2UKGgGR0CUqAV2Rq46aAdN6ANoCEdAstpzIHTqjnV9lChoBkdAk1sFgMMI/2gHTegDaAhHQLLbfSCe2/l1fZQoaAZHQJXf2ZE2HcloB03oA2gIR0Cy3jcAvL5idX2UKGgGR0CSjLWNFSbZaAdN6ANoCEdAst6Ahr30w3V9lChoBkdAlIs9AC4jKWgHTegDaAhHQLLiWx7iQ1d1fZQoaAZHQIzFmi8FpwloB03oA2gIR0Cy42IGhVU/dX2UKGgGR0CSUPwSJ0nxaAdN6ANoCEdAsuVwCcPOIXV9lChoBkdAkg3dCVrylWgHTegDaAhHQLLloL8rI5p1fZQoaAZHQJMiM7YChexoB03oA2gIR0Cy6Id+so2GdX2UKGgGR0COt7GBnSOSaAdN6ANoCEdAsumP5DZ13nV9lChoBkdAkfxTT4L1EmgHTegDaAhHQLLrvyBClad1fZQoaAZHQJO6+YNRWLhoB03oA2gIR0Cy7AR6KLsKdX2UKGgGR0CSavgVoHs1aAdN6ANoCEdAsvB9zkp7TnV9lChoBkdAkCX2tITXa2gHTegDaAhHQLLxjp9ZzPt1fZQoaAZHQJIH0uYhMaloB03oA2gIR0Cy86jLfUF0dX2UKGgGR0CPK96AvtdBaAdN6ANoCEdAsvPbsY2sJnV9lChoBkdAkViFmapgkWgHTegDaAhHQLL2wYsunMt1fZQoaAZHQJWKylbeMydoB03oA2gIR0Cy99CiVSn+dX2UKGgGR0CTfnM+/xlQaAdN6ANoCEdAsvnabhFVk3V9lChoBkdAlME+vpyIYWgHTegDaAhHQLL6Ddat9x91fZQoaAZHQJXjcLRa5gBoB03oA2gIR0Cy/j6Vlf7adX2UKGgGR0CVEniGnGbTaAdN6ANoCEdAsv/VxIatLnV9lChoBkdAlj17eIl+mWgHTegDaAhHQLMB2wzch1V1fZQoaAZHQJJbMtg8bJhoB03oA2gIR0CzAgsZDRdAdX2UKGgGR0CXAuC2c8T0aAdN6ANoCEdAswTcsmOU+3V9lChoBkdAkkOOiN83M2gHTegDaAhHQLMF6LyMDOl1fZQoaAZHQJYX2RJVbRpoB03oA2gIR0CzB/C8an76dX2UKGgGR0CWEM0rbxmTaAdN6ANoCEdAswgfjZL7GnV9lChoBkdAlhaJE+gUUWgHTegDaAhHQLMLj46fapR1fZQoaAZHQJRqxZha1TloB03oA2gIR0CzDUQBHTZydX2UKGgGR0CVNedrO7g9aAdN6ANoCEdAsw/2j8DSxHV9lChoBkdAlcoL2xptamgHTegDaAhHQLMQKM7lq8F1fZQoaAZHQJO32o5xR2toB03oA2gIR0CzEv6NZNfxdX2UKGgGR0CUZqLuhK15aAdN6ANoCEdAsxQBBhQWN3V9lChoBkdAkYyTAFgUlGgHTegDaAhHQLMWEMBIWgx1fZQoaAZHQJE+0EHMUypoB03oA2gIR0CzFkIgRsdldX2UKGgGR0CTzxgxJul5aAdN6ANoCEdAsxlCnYQJ5XV9lChoBkdAkybj7655JWgHTegDaAhHQLMazagVXV91fZQoaAZHQJPx5fsu3+doB03oA2gIR0CzHfIIrvsrdX2UKGgGR0CUnzV/+bVjaAdN6ANoCEdAsx4rKGL1mXV9lChoBkdAlMygFcIJJGgHTegDaAhHQLMhDTibUgB1fZQoaAZHQJUkw94eLehoB03oA2gIR0CzIhTXnQpndX2UKGgGR0CSXQ1pj+aSaAdN6ANoCEdAsyQfZzxPPHV9lChoBkdAlOy7zK9wm2gHTegDaAhHQLMkTyCnP3V1fZQoaAZHQJODQpSaVlhoB03oA2gIR0CzJzOX3QD3dX2UKGgGR0CTBktPYWcjaAdN6ANoCEdAsyhbFQ2uPnV9lChoBkdAk8iMTi83/GgHTegDaAhHQLMrfqpcX3x1fZQoaAZHQJLemPeYUnJoB03oA2gIR0CzK9NV/+bWdX2UKGgGR0CVpPdD6WPcaAdN6ANoCEdAsy86ml67d3V9lChoBkdAkcm6guh9LGgHTegDaAhHQLMwR5Jsfq51fZQoaAZHQJN/638XN1RoB03oA2gIR0CzMlLHEMspdX2UKGgGR0CUy1oGpuMuaAdN6ANoCEdAszKDDsMRYnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaf82a0e6f99f69a27502c034424dd95cb4267d9259e0a1bbad45bf4d6a011ef
3
+ size 1009730
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1207.0269171364657, "std_reward": 163.36211223672572, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-20T21:54:34.791481"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56c16c1647f8a8d915eccb54475e0297d6f04a52c2068876d49935d6414f2b21
3
+ size 2170