--- pipeline_tag: text-generation base_model: bigcode/starcoder2-15b datasets: - bigcode/self-oss-instruct-sc2-exec-filter-50k license: bigcode-openrail-m library_name: transformers tags: - code model-index: - name: starcoder2-15b-instruct-v0.1 results: - task: type: text-generation dataset: name: LiveCodeBench (code generation) type: livecodebench-codegeneration metrics: - type: pass@1 value: 20.4 - task: type: text-generation dataset: name: LiveCodeBench (self repair) type: livecodebench-selfrepair metrics: - type: pass@1 value: 20.9 - task: type: text-generation dataset: name: LiveCodeBench (test output prediction) type: livecodebench-testoutputprediction metrics: - type: pass@1 value: 29.8 - task: type: text-generation dataset: name: LiveCodeBench (code execution) type: livecodebench-codeexecution metrics: - type: pass@1 value: 28.1 - task: type: text-generation dataset: name: HumanEval type: humaneval metrics: - type: pass@1 value: 72.6 - task: type: text-generation dataset: name: HumanEval+ type: humanevalplus metrics: - type: pass@1 value: 63.4 - task: type: text-generation dataset: name: MBPP type: mbpp metrics: - type: pass@1 value: 75.2 - task: type: text-generation dataset: name: MBPP+ type: mbppplus metrics: - type: pass@1 value: 61.2 - task: type: text-generation dataset: name: DS-1000 type: ds-1000 metrics: - type: pass@1 value: 40.6 --- # StarCoder2-Instruct: Fully Transparent and Permissive Self-Alignment for Code Generation ![Banner](https://huggingface.co./datasets/bigcode/starcoder2-instruct-assets/resolve/main/banner.png) ## Model Summary We introduce StarCoder2-15B-Instruct-v0.1, the very first entirely self-aligned code Large Language Model (LLM) trained with a fully permissive and transparent pipeline. Our open-source pipeline uses StarCoder2-15B to generate thousands of instruction-response pairs, which are then used to fine-tune StarCoder-15B itself without any human annotations or distilled data from huge and proprietary LLMs. - **Model:** [bigcode/starcoder2-15b-instruct-v0.1](https://huggingface.co./bigcode/starcoder2-instruct-15b-v0.1) - **Code:** [bigcode-project/starcoder2-self-align](https://github.com/bigcode-project/starcoder2-self-align) - **Dataset:** [bigcode/self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co./datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k/) - **Authors:** [Yuxiang Wei](https://yuxiang.cs.illinois.edu), [Federico Cassano](https://federico.codes/), [Jiawei Liu](https://jw-liu.xyz), [Yifeng Ding](https://yifeng-ding.com), [Naman Jain](https://naman-ntc.github.io), [Harm de Vries](https://www.harmdevries.com), [Leandro von Werra](https://twitter.com/lvwerra), [Arjun Guha](https://www.khoury.northeastern.edu/home/arjunguha/main/home/), [Lingming Zhang](https://lingming.cs.illinois.edu). ![self-alignment pipeline](https://huggingface.co./datasets/bigcode/starcoder2-instruct-assets/resolve/main/method.png) ## Use ### Intended use The model is designed to respond to **coding-related instructions in a single turn**. Instructions in other styles may result in less accurate responses. Here is an example to get started with the model using the [transformers](https://huggingface.co./docs/transformers/index) library: ```python import transformers import torch pipeline = transformers.pipeline( model="bigcode/starcoder2-15b-instruct-v0.1", task="text-generation", torch_dtype=torch.bfloat16, device_map="auto", ) def respond(instruction: str, response_prefix: str) -> str: messages = [{"role": "user", "content": instruction}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False) prompt += response_prefix teminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("###"), ] result = pipeline( prompt, max_length=256, num_return_sequences=1, do_sample=False, eos_token_id=teminators, pad_token_id=pipeline.tokenizer.eos_token_id, truncation=True, ) response = response_prefix + result[0]["generated_text"][len(prompt) :].split("###")[0].rstrip() return response instruction = "Write a quicksort function in Python with type hints and a 'less_than' parameter for custom sorting criteria." response_prefix = "" print(respond(instruction, response_prefix)) ``` Here is the expected output: `````` Here's how you can implement a quicksort function in Python with type hints and a 'less_than' parameter for custom sorting criteria: ```python from typing import TypeVar, Callable T = TypeVar('T') def quicksort(items: list[T], less_than: Callable[[T, T], bool] = lambda x, y: x < y) -> list[T]: if len(items) <= 1: return items pivot = items[0] less = [x for x in items[1:] if less_than(x, pivot)] greater = [x for x in items[1:] if not less_than(x, pivot)] return quicksort(less, less_than) + [pivot] + quicksort(greater, less_than) ``` `````` ### Bias, Risks, and Limitations StarCoder2-15B-Instruct-v0.1 is primarily finetuned for Python code generation tasks that can be verified through execution, which may lead to certain biases and limitations. For example, the model might not adhere strictly to instructions that dictate the output format. In these situations, it's beneficial to provide a **response prefix** or a **one-shot example** to steer the model’s output. Additionally, the model may have limitations with other programming languages and out-of-domain coding tasks. The model also inherits the bias, risks, and limitations from its base StarCoder2-15B model. For more information, please refer to the [StarCoder2-15B model card](https://huggingface.co./bigcode/starcoder2-15b). ## Evaluation on EvalPlus, LiveCodeBench, and DS-1000 ![EvalPlus](https://huggingface.co./datasets/bigcode/starcoder2-instruct-assets/resolve/main/evalplus.png) ![LiveCodeBench and DS-1000](https://huggingface.co./datasets/bigcode/starcoder2-instruct-assets/resolve/main/lcb-ds1000.png) ## Training Details ### Hyperparameters - **Optimizer:** Adafactor - **Learning rate:** 1e-5 - **Epoch:** 4 - **Batch size:** 64 - **Warmup ratio:** 0.05 - **Scheduler:** Linear - **Sequence length:** 1280 - **Dropout**: Not applied ### Hardware 1 x NVIDIA A100 80GB ## Resources - **Model:** [bigcode/starCoder2-15b-instruct-v0.1](https://huggingface.co./bigcode/starcoder2-instruct-15b-v0.1) - **Code:** [bigcode-project/starcoder2-self-align](https://github.com/bigcode-project/starcoder2-self-align) - **Dataset:** [bigcode/self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co./datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k/) ### Full Data Pipeline Our dataset generation pipeline has several steps. We provide intermediate datasets for every step of the pipeline: 1. Original seed dataset filtered from The Stack v1: https://huggingface.co./datasets/bigcode/python-stack-v1-functions-filtered 2. Seed dataset filtered using StarCoder2-15B as a judge for removing items with bad docstrings: https://huggingface.co./datasets/bigcode/python-stack-v1-functions-filtered-sc2 3. seed -> concepts: https://huggingface.co./datasets/bigcode/self-oss-instruct-sc2-concepts 4. concepts -> instructions: https://huggingface.co./datasets/bigcode/self-oss-instruct-sc2-instructions 5. instructions -> response: https://huggingface.co./datasets/bigcode/self-oss-instruct-sc2-responses-unfiltered 6. Responses filtered by executing them: https://huggingface.co./datasets/bigcode/self-oss-instruct-sc2-exec-filter-500k-raw 7. Executed responses filtered by deduplicating them (final dataset): https://huggingface.co./datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k