JaeHyeong commited on
Commit
6e02a72
·
1 Parent(s): 5104702

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -0
README.md CHANGED
@@ -14,6 +14,13 @@ license: cc-by-4.0
14
 
15
  # bespin-global/klue-sroberta-base-continue-learning-by-mnr
16
 
 
 
 
 
 
 
 
17
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
18
 
19
  <!--- Describe your model here -->
 
14
 
15
  # bespin-global/klue-sroberta-base-continue-learning-by-mnr
16
 
17
+ 해당 모델은 KLUE/NLI, KLUE/STS 데이터셋을 활용하였으며, sentence-transformers의 공식 문서 내 소개된 [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) 방법을 통해 아래와 같이 학습되었습니다.
18
+ 1. NLI 데이터셋을 통해 nagative sampling 후, MultipleNegativeRankingLoss를 활용하여 1차 NLI training 수행
19
+ 2. 1에서 학습완료 된 모델에 STS 데이터셋을 통해, CosineSimilarityLoss를 활용하여 2차 STS training 수행
20
+
21
+ 학습에 관한 자세한 내용은 [Blog](https://velog.io/@jaehyeong/Basic-NLP-sentence-transformers-%EB%9D%BC%EC%9D%B4%EB%B8%8C%EB%9F%AC%EB%A6%AC%EB%A5%BC-%ED%99%9C%EC%9A%A9%ED%95%9C-SBERT-%ED%95%99%EC%8A%B5-%EB%B0%A9%EB%B2%95#225-continue-learning-by-sts)와 [Colab 실습 코드](https://colab.research.google.com/drive/1uDt3o_Nv2cTiVbIAIUkst_eOSD37Wkmf)를 참고해주세요.
22
+
23
+ ---
24
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
25
 
26
  <!--- Describe your model here -->