versae
commited on
Commit
·
75469bd
0
Parent(s):
Training dump
Browse files- .gitattributes +19 -0
- .gitignore +4 -0
- configs/base/config.json +25 -0
- configs/base/tokenizer.json +0 -0
- configs/large/config.json +25 -0
- configs/large/tokenizer.json +0 -0
- mc4/README.md +525 -0
- mc4/dummy/af/0.0.0/dummy_data.zip +0 -0
- mc4/mc4.py +426 -0
- mc4/mc4.py.lock +0 -0
- outputs/checkpoints/checkpoint-140001/config.json +25 -0
- outputs/checkpoints/checkpoint-140001/data_collator.joblib +3 -0
- outputs/checkpoints/checkpoint-140001/flax_model.msgpack +3 -0
- outputs/checkpoints/checkpoint-140001/optimizer_state.msgpack +3 -0
- outputs/checkpoints/checkpoint-140001/training_args.joblib +3 -0
- outputs/checkpoints/checkpoint-140001/training_state.json +1 -0
- outputs/checkpoints/checkpoint-150001/config.json +25 -0
- outputs/checkpoints/checkpoint-150001/data_collator.joblib +3 -0
- outputs/checkpoints/checkpoint-150001/flax_model.msgpack +3 -0
- outputs/checkpoints/checkpoint-150001/optimizer_state.msgpack +3 -0
- outputs/checkpoints/checkpoint-150001/training_args.joblib +3 -0
- outputs/checkpoints/checkpoint-150001/training_state.json +1 -0
- outputs/checkpoints/checkpoint-160001/config.json +25 -0
- outputs/checkpoints/checkpoint-160001/data_collator.joblib +3 -0
- outputs/checkpoints/checkpoint-160001/flax_model.msgpack +3 -0
- outputs/checkpoints/checkpoint-160001/optimizer_state.msgpack +3 -0
- outputs/checkpoints/checkpoint-160001/training_args.joblib +3 -0
- outputs/checkpoints/checkpoint-160001/training_state.json +1 -0
- outputs/checkpoints/checkpoint-170001/config.json +25 -0
- outputs/checkpoints/checkpoint-170001/data_collator.joblib +3 -0
- outputs/checkpoints/checkpoint-170001/flax_model.msgpack +3 -0
- outputs/checkpoints/checkpoint-170001/optimizer_state.msgpack +3 -0
- outputs/checkpoints/checkpoint-170001/training_args.joblib +3 -0
- outputs/checkpoints/checkpoint-170001/training_state.json +1 -0
- outputs/checkpoints/checkpoint-180001/config.json +25 -0
- outputs/checkpoints/checkpoint-180001/data_collator.joblib +3 -0
- outputs/checkpoints/checkpoint-180001/flax_model.msgpack +3 -0
- outputs/checkpoints/checkpoint-180001/optimizer_state.msgpack +3 -0
- outputs/checkpoints/checkpoint-180001/training_args.joblib +3 -0
- outputs/checkpoints/checkpoint-180001/training_state.json +1 -0
- outputs/config.json +25 -0
- outputs/data_collator.joblib +3 -0
- outputs/events.out.tfevents.1626172316.underestimate.4022703.3.v2 +3 -0
- outputs/flax_model.msgpack +3 -0
- outputs/optimizer_state.msgpack +3 -0
- outputs/training_args.joblib +3 -0
- outputs/training_state.json +1 -0
- run_mlm_flax_stream.py +722 -0
- run_stream.sh +27 -0
.gitattributes
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.log filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.wandb filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
run*.log
|
2 |
+
debug*.log
|
3 |
+
run*.wandb
|
4 |
+
wandb/
|
configs/base/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.9.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
+
}
|
configs/base/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
configs/large/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.9.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
+
}
|
configs/large/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mc4/README.md
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: mC4
|
3 |
+
annotations_creators:
|
4 |
+
- no-annotation
|
5 |
+
language_creators:
|
6 |
+
- found
|
7 |
+
languages:
|
8 |
+
- af
|
9 |
+
- am
|
10 |
+
- ar
|
11 |
+
- az
|
12 |
+
- be
|
13 |
+
- bg
|
14 |
+
- bg-Latn
|
15 |
+
- bn
|
16 |
+
- ca
|
17 |
+
- ceb
|
18 |
+
- co
|
19 |
+
- cs
|
20 |
+
- cy
|
21 |
+
- da
|
22 |
+
- de
|
23 |
+
- el
|
24 |
+
- el-Latn
|
25 |
+
- en
|
26 |
+
- eo
|
27 |
+
- es
|
28 |
+
- et
|
29 |
+
- eu
|
30 |
+
- fa
|
31 |
+
- fi
|
32 |
+
- fil
|
33 |
+
- fr
|
34 |
+
- fy
|
35 |
+
- ga
|
36 |
+
- gd
|
37 |
+
- gl
|
38 |
+
- gu
|
39 |
+
- ha
|
40 |
+
- haw
|
41 |
+
- hi
|
42 |
+
- hi-Latn
|
43 |
+
- hmn
|
44 |
+
- ht
|
45 |
+
- hu
|
46 |
+
- hy
|
47 |
+
- id
|
48 |
+
- ig
|
49 |
+
- is
|
50 |
+
- it
|
51 |
+
- iw
|
52 |
+
- ja
|
53 |
+
- ja-Latn
|
54 |
+
- jv
|
55 |
+
- ka
|
56 |
+
- kk
|
57 |
+
- km
|
58 |
+
- kn
|
59 |
+
- ko
|
60 |
+
- ku
|
61 |
+
- ky
|
62 |
+
- la
|
63 |
+
- lb
|
64 |
+
- lo
|
65 |
+
- lt
|
66 |
+
- lv
|
67 |
+
- mg
|
68 |
+
- mi
|
69 |
+
- mk
|
70 |
+
- ml
|
71 |
+
- mn
|
72 |
+
- mr
|
73 |
+
- ms
|
74 |
+
- mt
|
75 |
+
- my
|
76 |
+
- ne
|
77 |
+
- nl
|
78 |
+
- "no"
|
79 |
+
- ny
|
80 |
+
- pa
|
81 |
+
- pl
|
82 |
+
- ps
|
83 |
+
- pt
|
84 |
+
- ro
|
85 |
+
- ru
|
86 |
+
- ru-Latn
|
87 |
+
- sd
|
88 |
+
- si
|
89 |
+
- sk
|
90 |
+
- sl
|
91 |
+
- sm
|
92 |
+
- sn
|
93 |
+
- so
|
94 |
+
- sq
|
95 |
+
- sr
|
96 |
+
- st
|
97 |
+
- su
|
98 |
+
- sv
|
99 |
+
- sw
|
100 |
+
- ta
|
101 |
+
- te
|
102 |
+
- tg
|
103 |
+
- th
|
104 |
+
- tr
|
105 |
+
- uk
|
106 |
+
- und
|
107 |
+
- ur
|
108 |
+
- uz
|
109 |
+
- vi
|
110 |
+
- xh
|
111 |
+
- yi
|
112 |
+
- yo
|
113 |
+
- zh
|
114 |
+
- zh-Latn
|
115 |
+
- zu
|
116 |
+
licenses:
|
117 |
+
- odc-by-1.0
|
118 |
+
multilinguality:
|
119 |
+
- multilingual
|
120 |
+
size_categories:
|
121 |
+
- n<1K
|
122 |
+
- 1K<n<10K
|
123 |
+
- 10K<n<100K
|
124 |
+
- 100K<n<1M
|
125 |
+
- 1M<n<10M
|
126 |
+
- 10M<n<100M
|
127 |
+
- 100M<n<1B
|
128 |
+
- 1B<n<10B
|
129 |
+
source_datasets:
|
130 |
+
- original
|
131 |
+
task_categories:
|
132 |
+
- sequence-modeling
|
133 |
+
task_ids:
|
134 |
+
- language-modeling
|
135 |
+
paperswithcode_id: mc4
|
136 |
+
---
|
137 |
+
|
138 |
+
# Dataset Card for mC4
|
139 |
+
|
140 |
+
## Table of Contents
|
141 |
+
|
142 |
+
- [Dataset Card for mC4](#dataset-card-for-mc4)
|
143 |
+
- [Table of Contents](#table-of-contents)
|
144 |
+
- [Dataset Description](#dataset-description)
|
145 |
+
- [Dataset Summary](#dataset-summary)
|
146 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
147 |
+
- [Languages](#languages)
|
148 |
+
- [Dataset Structure](#dataset-structure)
|
149 |
+
- [Data Instances](#data-instances)
|
150 |
+
- [Data Fields](#data-fields)
|
151 |
+
- [Data Splits](#data-splits)
|
152 |
+
- [Dataset Creation](#dataset-creation)
|
153 |
+
- [Curation Rationale](#curation-rationale)
|
154 |
+
- [Source Data](#source-data)
|
155 |
+
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
|
156 |
+
- [Who are the source language producers?](#who-are-the-source-language-producers)
|
157 |
+
- [Annotations](#annotations)
|
158 |
+
- [Annotation process](#annotation-process)
|
159 |
+
- [Who are the annotators?](#who-are-the-annotators)
|
160 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
161 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
162 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
163 |
+
- [Discussion of Biases](#discussion-of-biases)
|
164 |
+
- [Other Known Limitations](#other-known-limitations)
|
165 |
+
- [Additional Information](#additional-information)
|
166 |
+
- [Dataset Curators](#dataset-curators)
|
167 |
+
- [Licensing Information](#licensing-information)
|
168 |
+
- [Citation Information](#citation-information)
|
169 |
+
- [Contributions](#contributions)
|
170 |
+
|
171 |
+
## Dataset Description
|
172 |
+
|
173 |
+
- **Homepage:** https://huggingface.co/datasets/allenai/c4
|
174 |
+
- **Paper:** https://arxiv.org/abs/1910.10683
|
175 |
+
|
176 |
+
### Dataset Summary
|
177 |
+
|
178 |
+
A multilingual colossal, cleaned version of Common Crawl's web crawl corpus. Based on Common Crawl dataset: "https://commoncrawl.org".
|
179 |
+
|
180 |
+
This is the version prepared by AllenAI, hosted at this address: https://huggingface.co/datasets/allenai/c4
|
181 |
+
|
182 |
+
108 languages are available and are reported in the table below.
|
183 |
+
|
184 |
+
Note that the languages that end with "-Latn" are simply romanized variants, i.e. written using the Latin script.
|
185 |
+
|
186 |
+
| language code | language name |
|
187 |
+
|:----------------|:---------------------|
|
188 |
+
| af | Afrikaans |
|
189 |
+
| am | Amharic |
|
190 |
+
| ar | Arabic |
|
191 |
+
| az | Azerbaijani |
|
192 |
+
| be | Belarusian |
|
193 |
+
| bg | Bulgarian |
|
194 |
+
| bg-Latn | Bulgarian (Latin) |
|
195 |
+
| bn | Bangla |
|
196 |
+
| ca | Catalan |
|
197 |
+
| ceb | Cebuano |
|
198 |
+
| co | Corsican |
|
199 |
+
| cs | Czech |
|
200 |
+
| cy | Welsh |
|
201 |
+
| da | Danish |
|
202 |
+
| de | German |
|
203 |
+
| el | Greek |
|
204 |
+
| el-Latn | Greek (Latin) |
|
205 |
+
| en | English |
|
206 |
+
| eo | Esperanto |
|
207 |
+
| es | Spanish |
|
208 |
+
| et | Estonian |
|
209 |
+
| eu | Basque |
|
210 |
+
| fa | Persian |
|
211 |
+
| fi | Finnish |
|
212 |
+
| fil | Filipino |
|
213 |
+
| fr | French |
|
214 |
+
| fy | Western Frisian |
|
215 |
+
| ga | Irish |
|
216 |
+
| gd | Scottish Gaelic |
|
217 |
+
| gl | Galician |
|
218 |
+
| gu | Gujarati |
|
219 |
+
| ha | Hausa |
|
220 |
+
| haw | Hawaiian |
|
221 |
+
| hi | Hindi |
|
222 |
+
| hi-Latn | Hindi (Latin script) |
|
223 |
+
| hmn | Hmong, Mong |
|
224 |
+
| ht | Haitian |
|
225 |
+
| hu | Hungarian |
|
226 |
+
| hy | Armenian |
|
227 |
+
| id | Indonesian |
|
228 |
+
| ig | Igbo |
|
229 |
+
| is | Icelandic |
|
230 |
+
| it | Italian |
|
231 |
+
| iw | former Hebrew |
|
232 |
+
| ja | Japanese |
|
233 |
+
| ja-Latn | Japanese (Latin) |
|
234 |
+
| jv | Javanese |
|
235 |
+
| ka | Georgian |
|
236 |
+
| kk | Kazakh |
|
237 |
+
| km | Khmer |
|
238 |
+
| kn | Kannada |
|
239 |
+
| ko | Korean |
|
240 |
+
| ku | Kurdish |
|
241 |
+
| ky | Kyrgyz |
|
242 |
+
| la | Latin |
|
243 |
+
| lb | Luxembourgish |
|
244 |
+
| lo | Lao |
|
245 |
+
| lt | Lithuanian |
|
246 |
+
| lv | Latvian |
|
247 |
+
| mg | Malagasy |
|
248 |
+
| mi | Maori |
|
249 |
+
| mk | Macedonian |
|
250 |
+
| ml | Malayalam |
|
251 |
+
| mn | Mongolian |
|
252 |
+
| mr | Marathi |
|
253 |
+
| ms | Malay |
|
254 |
+
| mt | Maltese |
|
255 |
+
| my | Burmese |
|
256 |
+
| ne | Nepali |
|
257 |
+
| nl | Dutch |
|
258 |
+
| no | Norwegian |
|
259 |
+
| ny | Nyanja |
|
260 |
+
| pa | Punjabi |
|
261 |
+
| pl | Polish |
|
262 |
+
| ps | Pashto |
|
263 |
+
| pt | Portuguese |
|
264 |
+
| ro | Romanian |
|
265 |
+
| ru | Russian |
|
266 |
+
| ru-Latn | Russian (Latin) |
|
267 |
+
| sd | Sindhi |
|
268 |
+
| si | Sinhala |
|
269 |
+
| sk | Slovak |
|
270 |
+
| sl | Slovenian |
|
271 |
+
| sm | San Marino |
|
272 |
+
| sn | Shona |
|
273 |
+
| so | Somali |
|
274 |
+
| sq | Albanian |
|
275 |
+
| sr | Serbian |
|
276 |
+
| st | Southern Sotho |
|
277 |
+
| su | Sundanese |
|
278 |
+
| sv | Swedish |
|
279 |
+
| sw | Swahili |
|
280 |
+
| ta | Tamil |
|
281 |
+
| te | Telugu |
|
282 |
+
| tg | Tajik |
|
283 |
+
| th | Thai |
|
284 |
+
| tr | Turkish |
|
285 |
+
| uk | Ukrainian |
|
286 |
+
| und | Unknown language |
|
287 |
+
| ur | Urdu |
|
288 |
+
| uz | Uzbek |
|
289 |
+
| vi | Vietnamese |
|
290 |
+
| xh | Xhosa |
|
291 |
+
| yi | Yiddish |
|
292 |
+
| yo | Yoruba |
|
293 |
+
| zh | Chinese |
|
294 |
+
| zh-Latn | Chinese (Latin) |
|
295 |
+
| zu | Zulu |
|
296 |
+
|
297 |
+
You can load the mC4 subset of any language like this:
|
298 |
+
|
299 |
+
```python
|
300 |
+
from datasets import load_dataset
|
301 |
+
|
302 |
+
en_mc4 = load_dataset("mc4", "en")
|
303 |
+
```
|
304 |
+
|
305 |
+
And if you can even specify a list of languages:
|
306 |
+
|
307 |
+
```python
|
308 |
+
from datasets import load_dataset
|
309 |
+
|
310 |
+
mc4_subset_with_five_languages = load_dataset("mc4", languages=["en", "fr", "es", "de", "zh"])
|
311 |
+
```
|
312 |
+
|
313 |
+
### Supported Tasks and Leaderboards
|
314 |
+
|
315 |
+
mC4 is mainly intended to pretrain language models and word representations.
|
316 |
+
|
317 |
+
### Languages
|
318 |
+
|
319 |
+
The dataset supports 108 languages.
|
320 |
+
|
321 |
+
## Dataset Structure
|
322 |
+
|
323 |
+
### Data Instances
|
324 |
+
|
325 |
+
An example form the `en` config is:
|
326 |
+
|
327 |
+
```
|
328 |
+
{'timestamp': '2018-06-24T01:32:39Z',
|
329 |
+
'text': 'Farm Resources in Plumas County\nShow Beginning Farmer Organizations & Professionals (304)\nThere are 304 resources serving Plumas County in the following categories:\nMap of Beginning Farmer Organizations & Professionals serving Plumas County\nVictoria Fisher - Office Manager - Loyalton, CA\nAmy Lynn Rasband - UCCE Plumas-Sierra Administrative Assistant II - Quincy , CA\nShow Farm Income Opportunities Organizations & Professionals (353)\nThere are 353 resources serving Plumas County in the following categories:\nFarm Ranch And Forest Retailers (18)\nMap of Farm Income Opportunities Organizations & Professionals serving Plumas County\nWarner Valley Wildlife Area - Plumas County\nShow Farm Resources Organizations & Professionals (297)\nThere are 297 resources serving Plumas County in the following categories:\nMap of Farm Resources Organizations & Professionals serving Plumas County\nThere are 57 resources serving Plumas County in the following categories:\nMap of Organic Certification Organizations & Professionals serving Plumas County',
|
330 |
+
'url': 'http://www.californialandcan.org/Plumas/Farm-Resources/'}
|
331 |
+
```
|
332 |
+
|
333 |
+
### Data Fields
|
334 |
+
|
335 |
+
The data have several fields:
|
336 |
+
|
337 |
+
- `url`: url of the source as a string
|
338 |
+
- `text`: text content as a string
|
339 |
+
- `timestamp`: timestamp as a string
|
340 |
+
|
341 |
+
### Data Splits
|
342 |
+
|
343 |
+
To build mC4, the authors used [CLD3](https://github.com/google/cld3) to identify over 100 languages. The resulting mC4 subsets for each language are reported in this table:
|
344 |
+
|
345 |
+
| config | train | validation |
|
346 |
+
|:---------|:--------|:-------------|
|
347 |
+
| af | ? | ? |
|
348 |
+
| am | ? | ? |
|
349 |
+
| ar | ? | ? |
|
350 |
+
| az | ? | ? |
|
351 |
+
| be | ? | ? |
|
352 |
+
| bg | ? | ? |
|
353 |
+
| bg-Latn | ? | ? |
|
354 |
+
| bn | ? | ? |
|
355 |
+
| ca | ? | ? |
|
356 |
+
| ceb | ? | ? |
|
357 |
+
| co | ? | ? |
|
358 |
+
| cs | ? | ? |
|
359 |
+
| cy | ? | ? |
|
360 |
+
| da | ? | ? |
|
361 |
+
| de | ? | ? |
|
362 |
+
| el | ? | ? |
|
363 |
+
| el-Latn | ? | ? |
|
364 |
+
| en | ? | ? |
|
365 |
+
| eo | ? | ? |
|
366 |
+
| es | ? | ? |
|
367 |
+
| et | ? | ? |
|
368 |
+
| eu | ? | ? |
|
369 |
+
| fa | ? | ? |
|
370 |
+
| fi | ? | ? |
|
371 |
+
| fil | ? | ? |
|
372 |
+
| fr | ? | ? |
|
373 |
+
| fy | ? | ? |
|
374 |
+
| ga | ? | ? |
|
375 |
+
| gd | ? | ? |
|
376 |
+
| gl | ? | ? |
|
377 |
+
| gu | ? | ? |
|
378 |
+
| ha | ? | ? |
|
379 |
+
| haw | ? | ? |
|
380 |
+
| hi | ? | ? |
|
381 |
+
| hi-Latn | ? | ? |
|
382 |
+
| hmn | ? | ? |
|
383 |
+
| ht | ? | ? |
|
384 |
+
| hu | ? | ? |
|
385 |
+
| hy | ? | ? |
|
386 |
+
| id | ? | ? |
|
387 |
+
| ig | ? | ? |
|
388 |
+
| is | ? | ? |
|
389 |
+
| it | ? | ? |
|
390 |
+
| iw | ? | ? |
|
391 |
+
| ja | ? | ? |
|
392 |
+
| ja-Latn | ? | ? |
|
393 |
+
| jv | ? | ? |
|
394 |
+
| ka | ? | ? |
|
395 |
+
| kk | ? | ? |
|
396 |
+
| km | ? | ? |
|
397 |
+
| kn | ? | ? |
|
398 |
+
| ko | ? | ? |
|
399 |
+
| ku | ? | ? |
|
400 |
+
| ky | ? | ? |
|
401 |
+
| la | ? | ? |
|
402 |
+
| lb | ? | ? |
|
403 |
+
| lo | ? | ? |
|
404 |
+
| lt | ? | ? |
|
405 |
+
| lv | ? | ? |
|
406 |
+
| mg | ? | ? |
|
407 |
+
| mi | ? | ? |
|
408 |
+
| mk | ? | ? |
|
409 |
+
| ml | ? | ? |
|
410 |
+
| mn | ? | ? |
|
411 |
+
| mr | ? | ? |
|
412 |
+
| ms | ? | ? |
|
413 |
+
| mt | ? | ? |
|
414 |
+
| my | ? | ? |
|
415 |
+
| ne | ? | ? |
|
416 |
+
| nl | ? | ? |
|
417 |
+
| no | ? | ? |
|
418 |
+
| ny | ? | ? |
|
419 |
+
| pa | ? | ? |
|
420 |
+
| pl | ? | ? |
|
421 |
+
| ps | ? | ? |
|
422 |
+
| pt | ? | ? |
|
423 |
+
| ro | ? | ? |
|
424 |
+
| ru | ? | ? |
|
425 |
+
| ru-Latn | ? | ? |
|
426 |
+
| sd | ? | ? |
|
427 |
+
| si | ? | ? |
|
428 |
+
| sk | ? | ? |
|
429 |
+
| sl | ? | ? |
|
430 |
+
| sm | ? | ? |
|
431 |
+
| sn | ? | ? |
|
432 |
+
| so | ? | ? |
|
433 |
+
| sq | ? | ? |
|
434 |
+
| sr | ? | ? |
|
435 |
+
| st | ? | ? |
|
436 |
+
| su | ? | ? |
|
437 |
+
| sv | ? | ? |
|
438 |
+
| sw | ? | ? |
|
439 |
+
| ta | ? | ? |
|
440 |
+
| te | ? | ? |
|
441 |
+
| tg | ? | ? |
|
442 |
+
| th | ? | ? |
|
443 |
+
| tr | ? | ? |
|
444 |
+
| uk | ? | ? |
|
445 |
+
| und | ? | ? |
|
446 |
+
| ur | ? | ? |
|
447 |
+
| uz | ? | ? |
|
448 |
+
| vi | ? | ? |
|
449 |
+
| xh | ? | ? |
|
450 |
+
| yi | ? | ? |
|
451 |
+
| yo | ? | ? |
|
452 |
+
| zh | ? | ? |
|
453 |
+
| zh-Latn | ? | ? |
|
454 |
+
| zu | ? | ? |
|
455 |
+
|
456 |
+
## Dataset Creation
|
457 |
+
|
458 |
+
### Curation Rationale
|
459 |
+
|
460 |
+
[More Information Needed]
|
461 |
+
|
462 |
+
### Source Data
|
463 |
+
|
464 |
+
#### Initial Data Collection and Normalization
|
465 |
+
|
466 |
+
[More Information Needed]
|
467 |
+
|
468 |
+
#### Who are the source language producers?
|
469 |
+
|
470 |
+
[More Information Needed]
|
471 |
+
|
472 |
+
### Annotations
|
473 |
+
|
474 |
+
#### Annotation process
|
475 |
+
|
476 |
+
[More Information Needed]
|
477 |
+
|
478 |
+
#### Who are the annotators?
|
479 |
+
|
480 |
+
[More Information Needed]
|
481 |
+
|
482 |
+
### Personal and Sensitive Information
|
483 |
+
|
484 |
+
[More Information Needed]
|
485 |
+
|
486 |
+
## Considerations for Using the Data
|
487 |
+
|
488 |
+
### Social Impact of Dataset
|
489 |
+
|
490 |
+
[More Information Needed]
|
491 |
+
|
492 |
+
### Discussion of Biases
|
493 |
+
|
494 |
+
[More Information Needed]
|
495 |
+
|
496 |
+
### Other Known Limitations
|
497 |
+
|
498 |
+
[More Information Needed]
|
499 |
+
|
500 |
+
## Additional Information
|
501 |
+
|
502 |
+
### Dataset Curators
|
503 |
+
|
504 |
+
[More Information Needed]
|
505 |
+
|
506 |
+
### Licensing Information
|
507 |
+
|
508 |
+
AllenAI are releasing this dataset under the terms of ODC-BY. By using this, you are also bound by the Common Crawl terms of use in respect of the content contained in the dataset.
|
509 |
+
|
510 |
+
### Citation Information
|
511 |
+
|
512 |
+
```
|
513 |
+
@article{2019t5,
|
514 |
+
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
|
515 |
+
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
|
516 |
+
journal = {arXiv e-prints},
|
517 |
+
year = {2019},
|
518 |
+
archivePrefix = {arXiv},
|
519 |
+
eprint = {1910.10683},
|
520 |
+
}
|
521 |
+
```
|
522 |
+
|
523 |
+
### Contributions
|
524 |
+
|
525 |
+
Thanks to [@dirkgr](https://github.com/dirkgr) and [@lhoestq](https://github.com/lhoestq) for adding this dataset.
|
mc4/dummy/af/0.0.0/dummy_data.zip
ADDED
Binary file (8.54 kB). View file
|
|
mc4/mc4.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""mC4 dataset based on Common Crawl."""
|
2 |
+
|
3 |
+
|
4 |
+
import gzip
|
5 |
+
import json
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
import kenlm
|
9 |
+
import numpy as np
|
10 |
+
from numpy.random import default_rng
|
11 |
+
|
12 |
+
|
13 |
+
logger = datasets.logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
_DESCRIPTION = """\
|
17 |
+
A colossal, cleaned version of Common Crawl's web crawl corpus.
|
18 |
+
|
19 |
+
Based on Common Crawl dataset: "https://commoncrawl.org".
|
20 |
+
|
21 |
+
This is the processed version of Google's mC4 dataset by AllenAI.
|
22 |
+
"""
|
23 |
+
|
24 |
+
_CITATION = """
|
25 |
+
@article{2019t5,
|
26 |
+
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
|
27 |
+
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
|
28 |
+
journal = {arXiv e-prints},
|
29 |
+
year = {2019},
|
30 |
+
archivePrefix = {arXiv},
|
31 |
+
eprint = {1910.10683},
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_URL = "https://github.com/allenai/allennlp/discussions/5056"
|
36 |
+
|
37 |
+
_DATA_URL = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/multilingual/c4-{language}{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz"
|
38 |
+
|
39 |
+
_LANGUAGES = [
|
40 |
+
"af",
|
41 |
+
"am",
|
42 |
+
"ar",
|
43 |
+
"az",
|
44 |
+
"be",
|
45 |
+
"bg",
|
46 |
+
"bg-Latn",
|
47 |
+
"bn",
|
48 |
+
"ca",
|
49 |
+
"ceb",
|
50 |
+
"co",
|
51 |
+
"cs",
|
52 |
+
"cy",
|
53 |
+
"da",
|
54 |
+
"de",
|
55 |
+
"el",
|
56 |
+
"el-Latn",
|
57 |
+
"en",
|
58 |
+
"eo",
|
59 |
+
"es",
|
60 |
+
"et",
|
61 |
+
"eu",
|
62 |
+
"fa",
|
63 |
+
"fi",
|
64 |
+
"fil",
|
65 |
+
"fr",
|
66 |
+
"fy",
|
67 |
+
"ga",
|
68 |
+
"gd",
|
69 |
+
"gl",
|
70 |
+
"gu",
|
71 |
+
"ha",
|
72 |
+
"haw",
|
73 |
+
"hi",
|
74 |
+
"hi-Latn",
|
75 |
+
"hmn",
|
76 |
+
"ht",
|
77 |
+
"hu",
|
78 |
+
"hy",
|
79 |
+
"id",
|
80 |
+
"ig",
|
81 |
+
"is",
|
82 |
+
"it",
|
83 |
+
"iw",
|
84 |
+
"ja",
|
85 |
+
"ja-Latn",
|
86 |
+
"jv",
|
87 |
+
"ka",
|
88 |
+
"kk",
|
89 |
+
"km",
|
90 |
+
"kn",
|
91 |
+
"ko",
|
92 |
+
"ku",
|
93 |
+
"ky",
|
94 |
+
"la",
|
95 |
+
"lb",
|
96 |
+
"lo",
|
97 |
+
"lt",
|
98 |
+
"lv",
|
99 |
+
"mg",
|
100 |
+
"mi",
|
101 |
+
"mk",
|
102 |
+
"ml",
|
103 |
+
"mn",
|
104 |
+
"mr",
|
105 |
+
"ms",
|
106 |
+
"mt",
|
107 |
+
"my",
|
108 |
+
"ne",
|
109 |
+
"nl",
|
110 |
+
"no",
|
111 |
+
"ny",
|
112 |
+
"pa",
|
113 |
+
"pl",
|
114 |
+
"ps",
|
115 |
+
"pt",
|
116 |
+
"ro",
|
117 |
+
"ru",
|
118 |
+
"ru-Latn",
|
119 |
+
"sd",
|
120 |
+
"si",
|
121 |
+
"sk",
|
122 |
+
"sl",
|
123 |
+
"sm",
|
124 |
+
"sn",
|
125 |
+
"so",
|
126 |
+
"sq",
|
127 |
+
"sr",
|
128 |
+
"st",
|
129 |
+
"su",
|
130 |
+
"sv",
|
131 |
+
"sw",
|
132 |
+
"ta",
|
133 |
+
"te",
|
134 |
+
"tg",
|
135 |
+
"th",
|
136 |
+
"tr",
|
137 |
+
"uk",
|
138 |
+
"und",
|
139 |
+
"ur",
|
140 |
+
"uz",
|
141 |
+
"vi",
|
142 |
+
"xh",
|
143 |
+
"yi",
|
144 |
+
"yo",
|
145 |
+
"zh",
|
146 |
+
"zh-Latn",
|
147 |
+
"zu",
|
148 |
+
]
|
149 |
+
|
150 |
+
_N_SHARDS_PER_SPLIT = {
|
151 |
+
"af": {"train": 64, "validation": 1},
|
152 |
+
"am": {"train": 16, "validation": 1},
|
153 |
+
"ar": {"train": 1024, "validation": 4},
|
154 |
+
"az": {"train": 256, "validation": 1},
|
155 |
+
"be": {"train": 128, "validation": 1},
|
156 |
+
"bg": {"train": 1024, "validation": 1},
|
157 |
+
"bg-Latn": {"train": 4, "validation": 1},
|
158 |
+
"bn": {"train": 512, "validation": 1},
|
159 |
+
"ca": {"train": 512, "validation": 1},
|
160 |
+
"ceb": {"train": 8, "validation": 1},
|
161 |
+
"co": {"train": 8, "validation": 1},
|
162 |
+
"cs": {"train": 1024, "validation": 2},
|
163 |
+
"cy": {"train": 256, "validation": 1},
|
164 |
+
"da": {"train": 1024, "validation": 1},
|
165 |
+
"de": {"train": 2048, "validation": 16},
|
166 |
+
"el": {"train": 1024, "validation": 2},
|
167 |
+
"el-Latn": {"train": 16, "validation": 1},
|
168 |
+
"en": {"train": 11264, "validation": 128},
|
169 |
+
"eo": {"train": 32, "validation": 1},
|
170 |
+
"es": {"train": 2048, "validation": 16},
|
171 |
+
"et": {"train": 256, "validation": 1},
|
172 |
+
"eu": {"train": 64, "validation": 1},
|
173 |
+
"fa": {"train": 1024, "validation": 2},
|
174 |
+
"fi": {"train": 1024, "validation": 1},
|
175 |
+
"fil": {"train": 64, "validation": 1},
|
176 |
+
"fr": {"train": 2048, "validation": 16},
|
177 |
+
"fy": {"train": 16, "validation": 1},
|
178 |
+
"ga": {"train": 16, "validation": 1},
|
179 |
+
"gd": {"train": 16, "validation": 1},
|
180 |
+
"gl": {"train": 128, "validation": 1},
|
181 |
+
"gu": {"train": 64, "validation": 1},
|
182 |
+
"ha": {"train": 8, "validation": 1},
|
183 |
+
"haw": {"train": 2, "validation": 1},
|
184 |
+
"hi": {"train": 1024, "validation": 2},
|
185 |
+
"hi-Latn": {"train": 16, "validation": 1},
|
186 |
+
"hmn": {"train": 8, "validation": 1},
|
187 |
+
"ht": {"train": 8, "validation": 1},
|
188 |
+
"hu": {"train": 1024, "validation": 2},
|
189 |
+
"hy": {"train": 128, "validation": 1},
|
190 |
+
"id": {"train": 1024, "validation": 4},
|
191 |
+
"ig": {"train": 4, "validation": 1},
|
192 |
+
"is": {"train": 128, "validation": 1},
|
193 |
+
"it": {"train": 1024, "validation": 8},
|
194 |
+
"iw": {"train": 1024, "validation": 1},
|
195 |
+
"ja": {"train": 1024, "validation": 8},
|
196 |
+
"ja-Latn": {"train": 8, "validation": 1},
|
197 |
+
"jv": {"train": 8, "validation": 1},
|
198 |
+
"ka": {"train": 256, "validation": 1},
|
199 |
+
"kk": {"train": 256, "validation": 1},
|
200 |
+
"km": {"train": 64, "validation": 1},
|
201 |
+
"kn": {"train": 64, "validation": 1},
|
202 |
+
"ko": {"train": 1024, "validation": 1},
|
203 |
+
"ku": {"train": 16, "validation": 1},
|
204 |
+
"ky": {"train": 64, "validation": 1},
|
205 |
+
"la": {"train": 64, "validation": 1},
|
206 |
+
"lb": {"train": 32, "validation": 1},
|
207 |
+
"lo": {"train": 8, "validation": 1},
|
208 |
+
"lt": {"train": 512, "validation": 1},
|
209 |
+
"lv": {"train": 256, "validation": 1},
|
210 |
+
"mg": {"train": 8, "validation": 1},
|
211 |
+
"mi": {"train": 4, "validation": 1},
|
212 |
+
"mk": {"train": 128, "validation": 1},
|
213 |
+
"ml": {"train": 128, "validation": 1},
|
214 |
+
"mn": {"train": 128, "validation": 1},
|
215 |
+
"mr": {"train": 1024, "validation": 1},
|
216 |
+
"ms": {"train": 512, "validation": 1},
|
217 |
+
"mt": {"train": 128, "validation": 1},
|
218 |
+
"my": {"train": 64, "validation": 1},
|
219 |
+
"ne": {"train": 256, "validation": 1},
|
220 |
+
"nl": {"train": 1024, "validation": 4},
|
221 |
+
"no": {"train": 1024, "validation": 1},
|
222 |
+
"ny": {"train": 4, "validation": 1},
|
223 |
+
"pa": {"train": 32, "validation": 1},
|
224 |
+
"pl": {"train": 1024, "validation": 4},
|
225 |
+
"ps": {"train": 16, "validation": 1},
|
226 |
+
"pt": {"train": 1024, "validation": 4},
|
227 |
+
"ro": {"train": 1024, "validation": 2},
|
228 |
+
"ru": {"train": 4096, "validation": 32},
|
229 |
+
"ru-Latn": {"train": 32, "validation": 1},
|
230 |
+
"sd": {"train": 64, "validation": 1},
|
231 |
+
"si": {"train": 64, "validation": 1},
|
232 |
+
"sk": {"train": 512, "validation": 1},
|
233 |
+
"sl": {"train": 256, "validation": 1},
|
234 |
+
"sm": {"train": 4, "validation": 1},
|
235 |
+
"sn": {"train": 8, "validation": 1},
|
236 |
+
"so": {"train": 64, "validation": 1},
|
237 |
+
"sq": {"train": 128, "validation": 1},
|
238 |
+
"sr": {"train": 256, "validation": 1},
|
239 |
+
"st": {"train": 2, "validation": 1},
|
240 |
+
"su": {"train": 4, "validation": 1},
|
241 |
+
"sv": {"train": 1024, "validation": 2},
|
242 |
+
"sw": {"train": 32, "validation": 1},
|
243 |
+
"ta": {"train": 256, "validation": 1},
|
244 |
+
"te": {"train": 128, "validation": 1},
|
245 |
+
"tg": {"train": 64, "validation": 1},
|
246 |
+
"th": {"train": 1024, "validation": 1},
|
247 |
+
"tr": {"train": 1024, "validation": 4},
|
248 |
+
"uk": {"train": 1024, "validation": 2},
|
249 |
+
"und": {"train": 3072, "validation": 32},
|
250 |
+
"ur": {"train": 128, "validation": 1},
|
251 |
+
"uz": {"train": 32, "validation": 1},
|
252 |
+
"vi": {"train": 1024, "validation": 4},
|
253 |
+
"xh": {"train": 2, "validation": 1},
|
254 |
+
"yi": {"train": 16, "validation": 1},
|
255 |
+
"yo": {"train": 2, "validation": 1},
|
256 |
+
"zh": {"train": 1024, "validation": 2},
|
257 |
+
"zh-Latn": {"train": 8, "validation": 1},
|
258 |
+
"zu": {"train": 8, "validation": 1},
|
259 |
+
}
|
260 |
+
|
261 |
+
|
262 |
+
class Mc4Config(datasets.BuilderConfig):
|
263 |
+
"""BuilderConfig for mC4."""
|
264 |
+
|
265 |
+
def __init__(self, *args, languages, **kwargs):
|
266 |
+
"""BuilderConfig for mC4.
|
267 |
+
Args:
|
268 |
+
languages (:obj:`List[str]`): list of languages to load
|
269 |
+
**kwargs: keyword arguments forwarded to super.
|
270 |
+
"""
|
271 |
+
super().__init__(
|
272 |
+
*args,
|
273 |
+
name="+".join(languages),
|
274 |
+
**kwargs,
|
275 |
+
)
|
276 |
+
self.languages = languages
|
277 |
+
|
278 |
+
|
279 |
+
class Mc4(datasets.GeneratorBasedBuilder):
|
280 |
+
"""mC4, a colossal, cleaned version of Common Crawl's web crawl corpus."""
|
281 |
+
|
282 |
+
BUILDER_CONFIGS = [Mc4Config(languages=[lang]) for lang in _LANGUAGES]
|
283 |
+
BUILDER_CONFIG_CLASS = Mc4Config
|
284 |
+
|
285 |
+
def __init__(self, *args, writer_batch_size=None, **kwargs):
|
286 |
+
self.data_files = kwargs.pop("data_files", {})
|
287 |
+
self.sampling_method = kwargs.pop("sampling_method", None)
|
288 |
+
self.perplexity_model = kwargs.pop("perplexity_model", None)
|
289 |
+
self.sampling_factor = kwargs.pop("sampling_factor", None)
|
290 |
+
self.boundaries = kwargs.pop("boundaries", None)
|
291 |
+
self.seed = kwargs.pop("seed", None)
|
292 |
+
if self.sampling_method:
|
293 |
+
if self.seed is not None:
|
294 |
+
self.rng = default_rng(self.seed)
|
295 |
+
else:
|
296 |
+
self.rng = default_rng()
|
297 |
+
if self.sampling_method == "random":
|
298 |
+
self.should_keep_doc = self._should_keep_doc_random
|
299 |
+
else:
|
300 |
+
# Loading 5-gram model
|
301 |
+
# http://dl.fbaipublicfiles.com/cc_net/lm/es.arpa.bin
|
302 |
+
logger.info("loading model = %s", self.perplexity_model)
|
303 |
+
self.pp_model = kenlm.Model(self.perplexity_model)
|
304 |
+
if self.sampling_method == "gaussian":
|
305 |
+
self.should_keep_doc = self._should_keep_doc_gaussian
|
306 |
+
else:
|
307 |
+
self.should_keep_doc = self._should_keep_doc_step
|
308 |
+
super().__init__(*args, writer_batch_size=writer_batch_size, **kwargs)
|
309 |
+
|
310 |
+
def get_perplexity(self, doc):
|
311 |
+
doc_log_score, doc_length = 0, 0
|
312 |
+
for line in doc.split("\n"):
|
313 |
+
log_score = self.pp_model.score(line)
|
314 |
+
length = len(line.split()) + 1
|
315 |
+
doc_log_score += log_score
|
316 |
+
doc_length += length
|
317 |
+
return 10.0 ** (-doc_log_score / doc_length)
|
318 |
+
|
319 |
+
def _should_keep_doc_step(self, doc, factor=1.5e5, boundaries=None):
|
320 |
+
perplexity = self.get_perplexity(doc)
|
321 |
+
if boundaries is None:
|
322 |
+
boundaries = [536394.99320948, 662247.50212365, 919250.87225178]
|
323 |
+
if perplexity <= boundaries[0]:
|
324 |
+
quartile_range = boundaries[0]
|
325 |
+
elif boundaries[0] < perplexity < boundaries[1]:
|
326 |
+
quartile_range = boundaries[1] - boundaries[0]
|
327 |
+
elif boundaries[1] < perplexity < boundaries[2]:
|
328 |
+
quartile_range = boundaries[2] - boundaries[1]
|
329 |
+
elif perplexity >= boundaries[2]:
|
330 |
+
quartile_range = 10 * boundaries[2]
|
331 |
+
probability = factor / quartile_range
|
332 |
+
return self.rng.uniform() < probability
|
333 |
+
|
334 |
+
def _should_keep_doc_gaussian(self, doc, factor=0.78, boundaries=None):
|
335 |
+
perplexity = self.get_perplexity(doc)
|
336 |
+
if boundaries is not None:
|
337 |
+
m = boundaries[1]
|
338 |
+
else:
|
339 |
+
m = 662247.50212365
|
340 |
+
exponential = np.exp(-9/2 * ((perplexity - m) / m) ** 2)
|
341 |
+
weighted_perplexity = factor * exponential
|
342 |
+
return self.rng.uniform() < weighted_perplexity
|
343 |
+
|
344 |
+
def _should_keep_doc_random(self, doc, factor=None, boundaries=None):
|
345 |
+
if factor is None:
|
346 |
+
factor = 0.5
|
347 |
+
return self.rng.uniform() <= factor
|
348 |
+
|
349 |
+
def _info(self):
|
350 |
+
return datasets.DatasetInfo(
|
351 |
+
description=_DESCRIPTION,
|
352 |
+
features=datasets.Features(
|
353 |
+
{
|
354 |
+
"text": datasets.Value("string"),
|
355 |
+
"timestamp": datasets.Value("string"),
|
356 |
+
"url": datasets.Value("string"),
|
357 |
+
}
|
358 |
+
),
|
359 |
+
supervised_keys=None,
|
360 |
+
homepage=_URL,
|
361 |
+
citation=_CITATION,
|
362 |
+
)
|
363 |
+
|
364 |
+
def _split_generators(self, dl_manager):
|
365 |
+
data_urls = {}
|
366 |
+
for split in ["train", "validation"]:
|
367 |
+
data_urls[split] = [
|
368 |
+
_DATA_URL.format(
|
369 |
+
language=self.config.name,
|
370 |
+
split_suffix="-validation" if split == "validation" else "",
|
371 |
+
index=index,
|
372 |
+
n_shards=_N_SHARDS_PER_SPLIT[lang][split],
|
373 |
+
)
|
374 |
+
for lang in self.config.languages
|
375 |
+
for index in range(_N_SHARDS_PER_SPLIT[lang][split])
|
376 |
+
]
|
377 |
+
if "train" in self.data_files:
|
378 |
+
train_downloaded_files = self.data_files["train"]
|
379 |
+
if not isinstance(train_downloaded_files, (tuple, list)):
|
380 |
+
train_downloaded_files = [train_downloaded_files]
|
381 |
+
else:
|
382 |
+
train_downloaded_files = dl_manager.download(data_urls["train"])
|
383 |
+
if "validation" in self.data_files:
|
384 |
+
validation_downloaded_files = self.data_files["validation"]
|
385 |
+
if not isinstance(validation_downloaded_files, (tuple, list)):
|
386 |
+
validation_downloaded_files = [validation_downloaded_files]
|
387 |
+
else:
|
388 |
+
validation_downloaded_files = dl_manager.download(data_urls["validation"])
|
389 |
+
return [
|
390 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}),
|
391 |
+
datasets.SplitGenerator(
|
392 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}
|
393 |
+
),
|
394 |
+
]
|
395 |
+
|
396 |
+
def _generate_examples(self, filepaths):
|
397 |
+
"""This function returns the examples in the raw (text) form by iterating on all the files."""
|
398 |
+
id_ = 0
|
399 |
+
for filepath in filepaths:
|
400 |
+
logger.info("generating examples from = %s", filepath)
|
401 |
+
if filepath.endswith("jsonl"):
|
402 |
+
with open(filepath, "r", encoding="utf-8") as f:
|
403 |
+
for line in f:
|
404 |
+
if line:
|
405 |
+
example = json.loads(line)
|
406 |
+
yield id_, example
|
407 |
+
id_ += 1
|
408 |
+
else:
|
409 |
+
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
|
410 |
+
if self.sampling_method:
|
411 |
+
logger.info("sampling method = %s", self.sampling_method)
|
412 |
+
for line in f:
|
413 |
+
if line:
|
414 |
+
example = json.loads(line)
|
415 |
+
if self.should_keep_doc(
|
416 |
+
example["text"],
|
417 |
+
factor=self.sampling_factor,
|
418 |
+
boundaries=self.boundaries):
|
419 |
+
yield id_, example
|
420 |
+
id_ += 1
|
421 |
+
else:
|
422 |
+
for line in f:
|
423 |
+
if line:
|
424 |
+
example = json.loads(line)
|
425 |
+
yield id_, example
|
426 |
+
id_ += 1
|
mc4/mc4.py.lock
ADDED
File without changes
|
outputs/checkpoints/checkpoint-140001/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.9.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
+
}
|
outputs/checkpoints/checkpoint-140001/data_collator.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02a6e9cfa63cb321cac9402efd29841b652999fcbf787800ae050e747b161ee
|
3 |
+
size 1471394
|
outputs/checkpoints/checkpoint-140001/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb3b6443b0b4e0fd6b95f7409525ddde51fb73dd99318041f2fecda9f547f5a6
|
3 |
+
size 249750019
|
outputs/checkpoints/checkpoint-140001/optimizer_state.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73ce4d1287008fdfac801ca7df44a0debe3e41f901970f3132f0cd49d2ad6bd0
|
3 |
+
size 499500278
|
outputs/checkpoints/checkpoint-140001/training_args.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc14fe16573d318dd510c7cfb42ebb7cc87b4dcf77e99247a2d1605cffd772b
|
3 |
+
size 1876
|
outputs/checkpoints/checkpoint-140001/training_state.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step": 140001}
|
outputs/checkpoints/checkpoint-150001/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.9.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
+
}
|
outputs/checkpoints/checkpoint-150001/data_collator.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02a6e9cfa63cb321cac9402efd29841b652999fcbf787800ae050e747b161ee
|
3 |
+
size 1471394
|
outputs/checkpoints/checkpoint-150001/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9f2a38ac6c111d01809dd28ae9078aab932064126a7de753ce0d88bd60421e4
|
3 |
+
size 249750019
|
outputs/checkpoints/checkpoint-150001/optimizer_state.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84f53f9b574ccfb97696f637d71903b9762ef2718c656bea201e5aeb9078c328
|
3 |
+
size 499500278
|
outputs/checkpoints/checkpoint-150001/training_args.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc14fe16573d318dd510c7cfb42ebb7cc87b4dcf77e99247a2d1605cffd772b
|
3 |
+
size 1876
|
outputs/checkpoints/checkpoint-150001/training_state.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step": 150001}
|
outputs/checkpoints/checkpoint-160001/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.9.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
+
}
|
outputs/checkpoints/checkpoint-160001/data_collator.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02a6e9cfa63cb321cac9402efd29841b652999fcbf787800ae050e747b161ee
|
3 |
+
size 1471394
|
outputs/checkpoints/checkpoint-160001/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b86d26169d8fb7bb58ae7fecd67ca557a0affc93bf2d5b5947af0070ee894ab9
|
3 |
+
size 249750019
|
outputs/checkpoints/checkpoint-160001/optimizer_state.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea3a8f65ea9c3c6c3606f1167c4e54049784fa8b2a5ee3f4936563ecd4f811b6
|
3 |
+
size 499500278
|
outputs/checkpoints/checkpoint-160001/training_args.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc14fe16573d318dd510c7cfb42ebb7cc87b4dcf77e99247a2d1605cffd772b
|
3 |
+
size 1876
|
outputs/checkpoints/checkpoint-160001/training_state.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step": 160001}
|
outputs/checkpoints/checkpoint-170001/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.9.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
+
}
|
outputs/checkpoints/checkpoint-170001/data_collator.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02a6e9cfa63cb321cac9402efd29841b652999fcbf787800ae050e747b161ee
|
3 |
+
size 1471394
|
outputs/checkpoints/checkpoint-170001/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c40291527e2cf6e418cf78bb9cd4eec53ac716230987ad7a0a447bf0ce041d4c
|
3 |
+
size 249750019
|
outputs/checkpoints/checkpoint-170001/optimizer_state.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90dbe4fe7d7694dd86d13e9b075953620aa4dabb4fdc2023b6ede17aa720848e
|
3 |
+
size 499500278
|
outputs/checkpoints/checkpoint-170001/training_args.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc14fe16573d318dd510c7cfb42ebb7cc87b4dcf77e99247a2d1605cffd772b
|
3 |
+
size 1876
|
outputs/checkpoints/checkpoint-170001/training_state.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step": 170001}
|
outputs/checkpoints/checkpoint-180001/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.9.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
+
}
|
outputs/checkpoints/checkpoint-180001/data_collator.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02a6e9cfa63cb321cac9402efd29841b652999fcbf787800ae050e747b161ee
|
3 |
+
size 1471394
|
outputs/checkpoints/checkpoint-180001/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:393c37966461709fe51a3b3f84befb7fa7e5030025856d171308efd40dbbc7da
|
3 |
+
size 249750019
|
outputs/checkpoints/checkpoint-180001/optimizer_state.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a33cad417a7e78eaafc1c041f93fd54ad9f63869d01e1351bac4abcd58e4eeb
|
3 |
+
size 499500278
|
outputs/checkpoints/checkpoint-180001/training_args.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc14fe16573d318dd510c7cfb42ebb7cc87b4dcf77e99247a2d1605cffd772b
|
3 |
+
size 1876
|
outputs/checkpoints/checkpoint-180001/training_state.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step": 180001}
|
outputs/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.9.0.dev0",
|
22 |
+
"type_vocab_size": 1,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
+
}
|
outputs/data_collator.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02a6e9cfa63cb321cac9402efd29841b652999fcbf787800ae050e747b161ee
|
3 |
+
size 1471394
|
outputs/events.out.tfevents.1626172316.underestimate.4022703.3.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54e7a88ae2dc3c9128df68ad99b735f3ae87946bc9753da8eb080eb7379dc4d3
|
3 |
+
size 26964023
|
outputs/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:393c37966461709fe51a3b3f84befb7fa7e5030025856d171308efd40dbbc7da
|
3 |
+
size 249750019
|
outputs/optimizer_state.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a33cad417a7e78eaafc1c041f93fd54ad9f63869d01e1351bac4abcd58e4eeb
|
3 |
+
size 499500278
|
outputs/training_args.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc14fe16573d318dd510c7cfb42ebb7cc87b4dcf77e99247a2d1605cffd772b
|
3 |
+
size 1876
|
outputs/training_state.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step": 180001}
|
run_mlm_flax_stream.py
ADDED
@@ -0,0 +1,722 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
|
18 |
+
text file or a dataset.
|
19 |
+
|
20 |
+
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
21 |
+
https://huggingface.co/models?filter=masked-lm
|
22 |
+
"""
|
23 |
+
import logging
|
24 |
+
import json
|
25 |
+
import os
|
26 |
+
import shutil
|
27 |
+
import sys
|
28 |
+
import time
|
29 |
+
from collections import defaultdict
|
30 |
+
from dataclasses import dataclass, field
|
31 |
+
|
32 |
+
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
|
33 |
+
import joblib
|
34 |
+
from pathlib import Path
|
35 |
+
from typing import Dict, List, Optional, Tuple
|
36 |
+
|
37 |
+
import datasets
|
38 |
+
import numpy as np
|
39 |
+
from datasets import load_dataset
|
40 |
+
from tqdm import tqdm
|
41 |
+
|
42 |
+
import flax
|
43 |
+
import jax
|
44 |
+
import jax.numpy as jnp
|
45 |
+
import kenlm # pip install https://github.com/kpu/kenlm/archive/master.zip
|
46 |
+
import optax
|
47 |
+
from flax import jax_utils, traverse_util
|
48 |
+
from flax.serialization import from_bytes, to_bytes
|
49 |
+
from flax.training import train_state
|
50 |
+
from flax.training.common_utils import get_metrics, onehot, shard
|
51 |
+
from transformers import (
|
52 |
+
CONFIG_MAPPING,
|
53 |
+
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
|
54 |
+
AutoConfig,
|
55 |
+
AutoTokenizer,
|
56 |
+
FlaxAutoModelForMaskedLM,
|
57 |
+
HfArgumentParser,
|
58 |
+
PreTrainedTokenizerBase,
|
59 |
+
TensorType,
|
60 |
+
TrainingArguments,
|
61 |
+
is_tensorboard_available,
|
62 |
+
set_seed,
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
if datasets.__version__ <= "1.8.0":
|
67 |
+
raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
|
68 |
+
|
69 |
+
|
70 |
+
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
|
71 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
72 |
+
|
73 |
+
|
74 |
+
@dataclass
|
75 |
+
class ModelArguments:
|
76 |
+
"""
|
77 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
78 |
+
"""
|
79 |
+
|
80 |
+
model_name_or_path: Optional[str] = field(
|
81 |
+
default=None,
|
82 |
+
metadata={
|
83 |
+
"help": "The model checkpoint for weights initialization."
|
84 |
+
"Don't set if you want to train a model from scratch."
|
85 |
+
},
|
86 |
+
)
|
87 |
+
model_type: Optional[str] = field(
|
88 |
+
default=None,
|
89 |
+
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
90 |
+
)
|
91 |
+
config_name: Optional[str] = field(
|
92 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
93 |
+
)
|
94 |
+
tokenizer_name: Optional[str] = field(
|
95 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
96 |
+
)
|
97 |
+
cache_dir: Optional[str] = field(
|
98 |
+
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
99 |
+
)
|
100 |
+
use_fast_tokenizer: bool = field(
|
101 |
+
default=True,
|
102 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
103 |
+
)
|
104 |
+
dtype: Optional[str] = field(
|
105 |
+
default="float32",
|
106 |
+
metadata={
|
107 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
108 |
+
},
|
109 |
+
)
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
class DataTrainingArguments:
|
113 |
+
"""
|
114 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
115 |
+
"""
|
116 |
+
|
117 |
+
dataset_name: Optional[str] = field(
|
118 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
119 |
+
)
|
120 |
+
dataset_config_name: Optional[str] = field(
|
121 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
122 |
+
)
|
123 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
124 |
+
validation_file: Optional[str] = field(
|
125 |
+
default=None,
|
126 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
127 |
+
)
|
128 |
+
train_ref_file: Optional[str] = field(
|
129 |
+
default=None,
|
130 |
+
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
|
131 |
+
)
|
132 |
+
validation_ref_file: Optional[str] = field(
|
133 |
+
default=None,
|
134 |
+
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
|
135 |
+
)
|
136 |
+
overwrite_cache: bool = field(
|
137 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
138 |
+
)
|
139 |
+
validation_split_percentage: Optional[int] = field(
|
140 |
+
default=5,
|
141 |
+
metadata={
|
142 |
+
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
143 |
+
},
|
144 |
+
)
|
145 |
+
max_seq_length: Optional[int] = field(
|
146 |
+
default=None,
|
147 |
+
metadata={
|
148 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
149 |
+
"than this will be truncated. Default to the max input length of the model."
|
150 |
+
},
|
151 |
+
)
|
152 |
+
preprocessing_num_workers: Optional[int] = field(
|
153 |
+
default=None,
|
154 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
155 |
+
)
|
156 |
+
mlm_probability: float = field(
|
157 |
+
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
|
158 |
+
)
|
159 |
+
pad_to_max_length: bool = field(
|
160 |
+
default=False,
|
161 |
+
metadata={
|
162 |
+
"help": "Whether to pad all samples to `max_seq_length`. "
|
163 |
+
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
164 |
+
},
|
165 |
+
)
|
166 |
+
line_by_line: bool = field(
|
167 |
+
default=False,
|
168 |
+
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
|
169 |
+
)
|
170 |
+
text_column_name: str = field(
|
171 |
+
default="text", metadata={"help": "The name of the column to retrieve the training text."}
|
172 |
+
)
|
173 |
+
shuffle_buffer_size: int = field(
|
174 |
+
default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
|
175 |
+
)
|
176 |
+
num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
|
177 |
+
num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
|
178 |
+
|
179 |
+
def __post_init__(self):
|
180 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
181 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
182 |
+
else:
|
183 |
+
if self.train_file is not None:
|
184 |
+
extension = self.train_file.split(".")[-1]
|
185 |
+
assert extension in ["csv", "json", "jsonl", "txt", "gz"], "`train_file` should be a csv, a json (lines) or a txt file."
|
186 |
+
if self.validation_file is not None:
|
187 |
+
extension = self.validation_file.split(".")[-1]
|
188 |
+
assert extension in ["csv", "json", "jsonl", "txt", "gz"], "`validation_file` should be a csv, a json (lines) or a txt file."
|
189 |
+
|
190 |
+
|
191 |
+
@flax.struct.dataclass
|
192 |
+
class FlaxDataCollatorForLanguageModeling:
|
193 |
+
"""
|
194 |
+
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
|
195 |
+
are not all of the same length.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
|
199 |
+
The tokenizer used for encoding the data.
|
200 |
+
mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
|
201 |
+
The probability with which to (randomly) mask tokens in the input.
|
202 |
+
|
203 |
+
.. note::
|
204 |
+
|
205 |
+
For best performance, this data collator should be used with a dataset having items that are dictionaries or
|
206 |
+
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
|
207 |
+
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
|
208 |
+
argument :obj:`return_special_tokens_mask=True`.
|
209 |
+
"""
|
210 |
+
|
211 |
+
tokenizer: PreTrainedTokenizerBase
|
212 |
+
mlm_probability: float = 0.15
|
213 |
+
|
214 |
+
def __post_init__(self):
|
215 |
+
if self.tokenizer.mask_token is None:
|
216 |
+
raise ValueError(
|
217 |
+
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
|
218 |
+
"You should pass `mlm=False` to train on causal language modeling instead."
|
219 |
+
)
|
220 |
+
|
221 |
+
def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
|
222 |
+
# Handle dict or lists with proper padding and conversion to tensor.
|
223 |
+
batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
|
224 |
+
|
225 |
+
# If special token mask has been preprocessed, pop it from the dict.
|
226 |
+
special_tokens_mask = batch.pop("special_tokens_mask", None)
|
227 |
+
|
228 |
+
batch["input_ids"], batch["labels"] = self.mask_tokens(
|
229 |
+
batch["input_ids"], special_tokens_mask=special_tokens_mask
|
230 |
+
)
|
231 |
+
return batch
|
232 |
+
|
233 |
+
def mask_tokens(
|
234 |
+
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
|
235 |
+
) -> Tuple[jnp.ndarray, jnp.ndarray]:
|
236 |
+
"""
|
237 |
+
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
|
238 |
+
"""
|
239 |
+
labels = inputs.copy()
|
240 |
+
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
|
241 |
+
probability_matrix = np.full(labels.shape, self.mlm_probability)
|
242 |
+
special_tokens_mask = special_tokens_mask.astype("bool")
|
243 |
+
|
244 |
+
probability_matrix[special_tokens_mask] = 0.0
|
245 |
+
masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
|
246 |
+
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
247 |
+
|
248 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
249 |
+
indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
|
250 |
+
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
|
251 |
+
|
252 |
+
# 10% of the time, we replace masked input tokens with random word
|
253 |
+
indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
|
254 |
+
indices_random &= masked_indices & ~indices_replaced
|
255 |
+
|
256 |
+
random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
|
257 |
+
inputs[indices_random] = random_words[indices_random]
|
258 |
+
|
259 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
260 |
+
return inputs, labels
|
261 |
+
|
262 |
+
|
263 |
+
@dataclass
|
264 |
+
class SamplingArguments:
|
265 |
+
"""
|
266 |
+
Arguments pertaining to how to perform sampling of the dataset.
|
267 |
+
"""
|
268 |
+
|
269 |
+
perplexity_model: Optional[str] = field(
|
270 |
+
default="./es.arpa.bin", metadata={"help": "Path to KenLM model to use to get perplexity values."}
|
271 |
+
)
|
272 |
+
sampling_method: Optional[str] = field(
|
273 |
+
default=None, metadata={"help": "Sample using a 'step' or 'gaussian' perplexity function per document, or 'random'."}
|
274 |
+
)
|
275 |
+
sampling_factor: Optional[float] = field(
|
276 |
+
default=None, metadata={"help": "Sampling factor. Integers for step function, decimals for gaussian."}
|
277 |
+
)
|
278 |
+
boundaries: Optional[str] = field(
|
279 |
+
default="536394.99320948,662247.50212365,919250.87225178", metadata={"help": "Quartile boundaries"}
|
280 |
+
)
|
281 |
+
|
282 |
+
def __post_init__(self):
|
283 |
+
self.boundaries = [float(q.strip()) for q in self.boundaries.split(",")]
|
284 |
+
|
285 |
+
|
286 |
+
def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
|
287 |
+
num_samples = len(samples_idx)
|
288 |
+
samples_to_remove = num_samples % batch_size
|
289 |
+
|
290 |
+
if samples_to_remove != 0:
|
291 |
+
samples_idx = samples_idx[:-samples_to_remove]
|
292 |
+
sections_split = num_samples // batch_size
|
293 |
+
batch_idx = np.split(samples_idx, sections_split)
|
294 |
+
return batch_idx
|
295 |
+
|
296 |
+
|
297 |
+
def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
|
298 |
+
"""
|
299 |
+
The training iterator is advanced so that after groupifying the samples,
|
300 |
+
`num_samples` of length `max_seq_length` are returned.
|
301 |
+
"""
|
302 |
+
num_total_tokens = max_seq_length * num_samples
|
303 |
+
samples = defaultdict(list)
|
304 |
+
|
305 |
+
i = 0
|
306 |
+
while i < num_total_tokens:
|
307 |
+
tokenized_samples = next(train_iterator)
|
308 |
+
i += len(tokenized_samples["input_ids"])
|
309 |
+
|
310 |
+
# concatenate tokenized samples to list
|
311 |
+
samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()}
|
312 |
+
|
313 |
+
# Concatenated tokens are split to lists of length `max_seq_length`.
|
314 |
+
# Note that remainedr of % max_seq_length are thrown away.
|
315 |
+
def group_texts(examples):
|
316 |
+
result = {
|
317 |
+
k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
|
318 |
+
for k, t in examples.items()
|
319 |
+
}
|
320 |
+
return result
|
321 |
+
|
322 |
+
grouped_samples = group_texts(samples)
|
323 |
+
return grouped_samples
|
324 |
+
|
325 |
+
|
326 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
327 |
+
summary_writer.scalar("train_time", train_time, step)
|
328 |
+
|
329 |
+
train_metrics = get_metrics(train_metrics)
|
330 |
+
for key, vals in train_metrics.items():
|
331 |
+
tag = f"train_{key}"
|
332 |
+
for i, val in enumerate(vals):
|
333 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
334 |
+
|
335 |
+
|
336 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
337 |
+
for metric_name, value in eval_metrics.items():
|
338 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
339 |
+
|
340 |
+
|
341 |
+
def save_checkpoint_files(state, data_collator, training_args, save_dir):
|
342 |
+
unreplicated_state = jax_utils.unreplicate(state)
|
343 |
+
with open(os.path.join(save_dir, "optimizer_state.msgpack"), "wb") as f:
|
344 |
+
f.write(to_bytes(unreplicated_state.opt_state))
|
345 |
+
joblib.dump(training_args, os.path.join(save_dir, "training_args.joblib"))
|
346 |
+
joblib.dump(data_collator, os.path.join(save_dir, "data_collator.joblib"))
|
347 |
+
with open(os.path.join(save_dir, "training_state.json"), "w") as f:
|
348 |
+
json.dump({"step": unreplicated_state.step.item()}, f)
|
349 |
+
|
350 |
+
|
351 |
+
def rotate_checkpoints(path, max_checkpoints=5):
|
352 |
+
paths = sorted(Path(path).iterdir(), key=os.path.getmtime)[::-1]
|
353 |
+
if len(paths) > max_checkpoints:
|
354 |
+
for path_to_delete in paths[max_checkpoints:]:
|
355 |
+
try:
|
356 |
+
shutil.rmtree(path_to_delete)
|
357 |
+
except OSError:
|
358 |
+
os.remove(path_to_delete)
|
359 |
+
|
360 |
+
|
361 |
+
if __name__ == "__main__":
|
362 |
+
# See all possible arguments in src/transformers/training_args.py
|
363 |
+
# or by passing the --help flag to this script.
|
364 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
365 |
+
|
366 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, SamplingArguments))
|
367 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
368 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
369 |
+
# let's parse it to get our arguments.
|
370 |
+
model_args, data_args, training_args, sampling_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
371 |
+
else:
|
372 |
+
model_args, data_args, training_args, sampling_args = parser.parse_args_into_dataclasses()
|
373 |
+
|
374 |
+
if (
|
375 |
+
os.path.exists(training_args.output_dir)
|
376 |
+
and os.listdir(training_args.output_dir)
|
377 |
+
and training_args.do_train
|
378 |
+
and not training_args.overwrite_output_dir
|
379 |
+
):
|
380 |
+
raise ValueError(
|
381 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
382 |
+
"Use --overwrite_output_dir to overcome."
|
383 |
+
)
|
384 |
+
|
385 |
+
# Setup logging
|
386 |
+
logging.basicConfig(
|
387 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
388 |
+
level="INFO",
|
389 |
+
datefmt="[%X]",
|
390 |
+
)
|
391 |
+
|
392 |
+
# Log on each process the small summary:
|
393 |
+
logger = logging.getLogger(__name__)
|
394 |
+
logger.warning(
|
395 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
396 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
397 |
+
)
|
398 |
+
|
399 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
400 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
401 |
+
|
402 |
+
# Set seed before initializing model.
|
403 |
+
set_seed(training_args.seed)
|
404 |
+
|
405 |
+
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
406 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
407 |
+
# (the dataset will be downloaded automatically from the datasets Hub).
|
408 |
+
#
|
409 |
+
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
410 |
+
# 'text' is found. You can easily tweak this behavior (see below).
|
411 |
+
if data_args.dataset_name is not None:
|
412 |
+
# Downloading and loading a dataset from the hub.
|
413 |
+
filepaths = {}
|
414 |
+
if data_args.train_file:
|
415 |
+
filepaths["train"] = data_args.train_file
|
416 |
+
if data_args.validation_file:
|
417 |
+
filepaths["validation"] = data_args.validation_file
|
418 |
+
try:
|
419 |
+
dataset = load_dataset(
|
420 |
+
data_args.dataset_name,
|
421 |
+
data_args.dataset_config_name,
|
422 |
+
cache_dir=model_args.cache_dir,
|
423 |
+
streaming=True,
|
424 |
+
split="train",
|
425 |
+
sampling_method=sampling_args.sampling_method,
|
426 |
+
sampling_factor=sampling_args.sampling_factor,
|
427 |
+
boundaries=sampling_args.boundaries,
|
428 |
+
perplexity_model=sampling_args.perplexity_model,
|
429 |
+
seed=training_args.seed,
|
430 |
+
data_files=filepaths,
|
431 |
+
)
|
432 |
+
except Exception as exc:
|
433 |
+
logger.warning(
|
434 |
+
f"Unable to load local dataset with perplexity sampling support. Using huggingface.co/datasets/{data_args.dataset_name}: {exc}"
|
435 |
+
)
|
436 |
+
dataset = load_dataset(
|
437 |
+
data_args.dataset_name,
|
438 |
+
data_args.dataset_config_name,
|
439 |
+
cache_dir=model_args.cache_dir,
|
440 |
+
streaming=True,
|
441 |
+
split="train",
|
442 |
+
)
|
443 |
+
|
444 |
+
if model_args.config_name:
|
445 |
+
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
|
446 |
+
elif model_args.model_name_or_path:
|
447 |
+
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
|
448 |
+
else:
|
449 |
+
config = CONFIG_MAPPING[model_args.model_type]()
|
450 |
+
logger.warning("You are instantiating a new config instance from scratch.")
|
451 |
+
|
452 |
+
if model_args.tokenizer_name:
|
453 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
454 |
+
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
455 |
+
)
|
456 |
+
elif model_args.model_name_or_path:
|
457 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
458 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
459 |
+
)
|
460 |
+
else:
|
461 |
+
raise ValueError(
|
462 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
463 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
464 |
+
)
|
465 |
+
|
466 |
+
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
|
467 |
+
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
|
468 |
+
# efficient when it receives the `special_tokens_mask`.
|
469 |
+
def tokenize_function(examples):
|
470 |
+
return tokenizer(
|
471 |
+
examples[data_args.text_column_name],
|
472 |
+
return_special_tokens_mask=True
|
473 |
+
)
|
474 |
+
|
475 |
+
tokenized_datasets = dataset.map(
|
476 |
+
tokenize_function,
|
477 |
+
batched=True,
|
478 |
+
)
|
479 |
+
|
480 |
+
shuffle_seed = training_args.seed
|
481 |
+
tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
|
482 |
+
|
483 |
+
# Enable tensorboard only on the master node
|
484 |
+
has_tensorboard = is_tensorboard_available()
|
485 |
+
if has_tensorboard and jax.process_index() == 0:
|
486 |
+
try:
|
487 |
+
from flax.metrics.tensorboard import SummaryWriter
|
488 |
+
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
|
489 |
+
# Enable Weight&Biases
|
490 |
+
import wandb
|
491 |
+
wandb.init(
|
492 |
+
entity='wandb',
|
493 |
+
project='hf-flax-bertin-roberta-es',
|
494 |
+
sync_tensorboard=True,
|
495 |
+
)
|
496 |
+
wandb.config.update(training_args)
|
497 |
+
wandb.config.update(model_args)
|
498 |
+
wandb.config.update(data_args)
|
499 |
+
except ImportError as ie:
|
500 |
+
has_tensorboard = False
|
501 |
+
logger.warning(
|
502 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
503 |
+
)
|
504 |
+
else:
|
505 |
+
logger.warning(
|
506 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
507 |
+
"Please run pip install tensorboard to enable."
|
508 |
+
)
|
509 |
+
|
510 |
+
# Data collator
|
511 |
+
# This one will take care of randomly masking the tokens.
|
512 |
+
data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
|
513 |
+
|
514 |
+
# Initialize our training
|
515 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
516 |
+
dropout_rngs = jax.random.split(rng, jax.local_device_count())
|
517 |
+
|
518 |
+
if model_args.model_name_or_path:
|
519 |
+
model = FlaxAutoModelForMaskedLM.from_pretrained(
|
520 |
+
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
521 |
+
)
|
522 |
+
else:
|
523 |
+
model = FlaxAutoModelForMaskedLM.from_config(
|
524 |
+
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
525 |
+
)
|
526 |
+
|
527 |
+
# Store some constant
|
528 |
+
num_epochs = int(training_args.num_train_epochs)
|
529 |
+
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
530 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
531 |
+
|
532 |
+
# define number steps per stream epoch
|
533 |
+
num_train_steps = data_args.num_train_steps
|
534 |
+
|
535 |
+
# Create learning rate schedule
|
536 |
+
warmup_fn = optax.linear_schedule(
|
537 |
+
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
|
538 |
+
)
|
539 |
+
decay_fn = optax.linear_schedule(
|
540 |
+
init_value=training_args.learning_rate,
|
541 |
+
end_value=0,
|
542 |
+
transition_steps=num_train_steps - training_args.warmup_steps,
|
543 |
+
)
|
544 |
+
linear_decay_lr_schedule_fn = optax.join_schedules(
|
545 |
+
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
|
546 |
+
)
|
547 |
+
|
548 |
+
# We use Optax's "masking" functionality to not apply weight decay
|
549 |
+
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
550 |
+
# mask boolean with the same structure as the parameters.
|
551 |
+
# The mask is True for parameters that should be decayed.
|
552 |
+
# Note that this mask is specifically adapted for FlaxBERT-like models.
|
553 |
+
# For other models, one should correct the layer norm parameter naming
|
554 |
+
# accordingly.
|
555 |
+
def decay_mask_fn(params):
|
556 |
+
flat_params = traverse_util.flatten_dict(params)
|
557 |
+
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
|
558 |
+
return traverse_util.unflatten_dict(flat_mask)
|
559 |
+
|
560 |
+
# create adam optimizer
|
561 |
+
adamw = optax.adamw(
|
562 |
+
learning_rate=linear_decay_lr_schedule_fn,
|
563 |
+
b1=training_args.adam_beta1,
|
564 |
+
b2=training_args.adam_beta2,
|
565 |
+
eps=training_args.adam_epsilon,
|
566 |
+
weight_decay=training_args.weight_decay,
|
567 |
+
mask=decay_mask_fn,
|
568 |
+
)
|
569 |
+
|
570 |
+
# Setup train state
|
571 |
+
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
|
572 |
+
|
573 |
+
# Define gradient update step fn
|
574 |
+
def train_step(state, batch, dropout_rng):
|
575 |
+
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
|
576 |
+
|
577 |
+
def loss_fn(params):
|
578 |
+
labels = batch.pop("labels")
|
579 |
+
|
580 |
+
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
581 |
+
|
582 |
+
# compute loss, ignore padded input tokens
|
583 |
+
label_mask = jnp.where(labels > 0, 1.0, 0.0)
|
584 |
+
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
|
585 |
+
|
586 |
+
# take average
|
587 |
+
loss = loss.sum() / label_mask.sum()
|
588 |
+
|
589 |
+
return loss
|
590 |
+
|
591 |
+
grad_fn = jax.value_and_grad(loss_fn)
|
592 |
+
loss, grad = grad_fn(state.params)
|
593 |
+
grad = jax.lax.pmean(grad, "batch")
|
594 |
+
new_state = state.apply_gradients(grads=grad)
|
595 |
+
|
596 |
+
metrics = jax.lax.pmean(
|
597 |
+
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
|
598 |
+
)
|
599 |
+
|
600 |
+
return new_state, metrics, new_dropout_rng
|
601 |
+
|
602 |
+
# Create parallel version of the train step
|
603 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
604 |
+
|
605 |
+
# Define eval fn
|
606 |
+
def eval_step(params, batch):
|
607 |
+
labels = batch.pop("labels")
|
608 |
+
|
609 |
+
logits = model(**batch, params=params, train=False)[0]
|
610 |
+
|
611 |
+
# compute loss, ignore padded input tokens
|
612 |
+
label_mask = jnp.where(labels > 0, 1.0, 0.0)
|
613 |
+
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
|
614 |
+
|
615 |
+
# compute accuracy
|
616 |
+
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
|
617 |
+
|
618 |
+
# summarize metrics
|
619 |
+
metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
|
620 |
+
metrics = jax.lax.psum(metrics, axis_name="batch")
|
621 |
+
|
622 |
+
return metrics
|
623 |
+
|
624 |
+
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
|
625 |
+
|
626 |
+
# Replicate the train state on each device
|
627 |
+
state = jax_utils.replicate(state)
|
628 |
+
|
629 |
+
train_time = 0
|
630 |
+
train_start = time.time()
|
631 |
+
train_metrics = []
|
632 |
+
eval_metrics = []
|
633 |
+
|
634 |
+
training_iter = iter(tokenized_datasets)
|
635 |
+
|
636 |
+
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
637 |
+
eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
|
638 |
+
|
639 |
+
steps = tqdm(range(num_train_steps), desc="Training...", position=0)
|
640 |
+
for step in range(num_train_steps):
|
641 |
+
# ======================== Training ================================
|
642 |
+
try:
|
643 |
+
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
|
644 |
+
except StopIteration:
|
645 |
+
# Once the end of the dataset stream is reached, the training iterator
|
646 |
+
# is reinitialized and reshuffled and a new eval dataset is randomely chosen.
|
647 |
+
shuffle_seed += 1
|
648 |
+
tokenized_datasets.set_epoch(shuffle_seed)
|
649 |
+
|
650 |
+
training_iter = iter(tokenized_datasets)
|
651 |
+
|
652 |
+
eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
|
653 |
+
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
|
654 |
+
|
655 |
+
# process input samples
|
656 |
+
model_inputs = data_collator(samples, pad_to_multiple_of=16)
|
657 |
+
|
658 |
+
# Model forward
|
659 |
+
model_inputs = shard(model_inputs.data)
|
660 |
+
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
|
661 |
+
|
662 |
+
train_metrics.append(train_metric)
|
663 |
+
|
664 |
+
if step % training_args.logging_steps == 0 and step > 0:
|
665 |
+
steps.write(
|
666 |
+
f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
|
667 |
+
)
|
668 |
+
train_time += time.time() - train_start
|
669 |
+
if has_tensorboard and jax.process_index() == 0:
|
670 |
+
write_train_metric(summary_writer, train_metrics, train_time, step)
|
671 |
+
train_metrics = []
|
672 |
+
|
673 |
+
# ======================== Evaluating ==============================
|
674 |
+
if step % training_args.eval_steps == 0 and step > 0:
|
675 |
+
eval_samples_idx = jnp.arange(data_args.num_eval_samples)
|
676 |
+
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
|
677 |
+
|
678 |
+
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
|
679 |
+
# process input samples
|
680 |
+
batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
|
681 |
+
model_inputs = data_collator(batch_eval_samples, pad_to_multiple_of=16)
|
682 |
+
|
683 |
+
# Model forward
|
684 |
+
model_inputs = shard(model_inputs.data)
|
685 |
+
metrics = p_eval_step(state.params, model_inputs)
|
686 |
+
eval_metrics.append(metrics)
|
687 |
+
|
688 |
+
# normalize eval metrics
|
689 |
+
eval_metrics = get_metrics(eval_metrics)
|
690 |
+
eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
|
691 |
+
eval_normalizer = eval_metrics.pop("normalizer")
|
692 |
+
eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
|
693 |
+
|
694 |
+
# Update progress bar
|
695 |
+
steps.desc = f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
|
696 |
+
|
697 |
+
if has_tensorboard and jax.process_index() == 0:
|
698 |
+
write_eval_metric(summary_writer, eval_metrics, step)
|
699 |
+
eval_metrics = []
|
700 |
+
|
701 |
+
# save checkpoint after eval_steps
|
702 |
+
if step % training_args.save_steps == 0 and step > 0 and jax.process_index() == 0:
|
703 |
+
logger.info(f"Saving checkpoint at {step + 1} steps")
|
704 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
705 |
+
model.save_pretrained(
|
706 |
+
training_args.output_dir,
|
707 |
+
params=params,
|
708 |
+
push_to_hub=training_args.push_to_hub,
|
709 |
+
commit_message=f"Saving weights and logs of step {step + 1}",
|
710 |
+
)
|
711 |
+
save_checkpoint_files(state, data_collator, training_args, training_args.output_dir)
|
712 |
+
checkpoints_dir = Path(training_args.output_dir) / "checkpoints" / f"checkpoint-{step + 1}"
|
713 |
+
checkpoints_dir.mkdir(parents=True, exist_ok=True)
|
714 |
+
model.save_pretrained(checkpoints_dir, params=params,)
|
715 |
+
save_checkpoint_files(state, data_collator, training_args, checkpoints_dir)
|
716 |
+
rotate_checkpoints(
|
717 |
+
Path(training_args.output_dir) / "checkpoints",
|
718 |
+
max_checkpoints=training_args.save_total_limit
|
719 |
+
)
|
720 |
+
|
721 |
+
# update tqdm bar
|
722 |
+
steps.update(1)
|
run_stream.sh
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# From https://arxiv.org/pdf/1907.11692.pdf for base model
|
2 |
+
python -c "import jax; print('TPUs', jax.device_count())"
|
3 |
+
python ./run_mlm_flax_stream.py \
|
4 |
+
--output_dir="./outputs" \
|
5 |
+
--model_type="roberta" \
|
6 |
+
--config_name="./configs/base" \
|
7 |
+
--tokenizer_name="./configs/base" \
|
8 |
+
--dataset_name="./mc4" \
|
9 |
+
--dataset_config_name="es" \
|
10 |
+
--train_file="../mc4-es-train-50M-steps.jsonl" \
|
11 |
+
--max_seq_length="128" \
|
12 |
+
--pad_to_max_length \
|
13 |
+
--per_device_train_batch_size="256" \
|
14 |
+
--per_device_eval_batch_size="256" \
|
15 |
+
--adam_beta1="0.9" \
|
16 |
+
--adam_beta2="0.98" \
|
17 |
+
--adam_epsilon="1e-6" \
|
18 |
+
--learning_rate="6e-4" \
|
19 |
+
--weight_decay="0.01" \
|
20 |
+
--save_steps="10000" \
|
21 |
+
--save_total_limit="5" \
|
22 |
+
--warmup_steps="24000" \
|
23 |
+
--overwrite_output_dir \
|
24 |
+
--num_train_steps="250000" \
|
25 |
+
--eval_steps="10000" \
|
26 |
+
--dtype="bfloat16" \
|
27 |
+
--logging_steps="500" 2>&1 | tee run_stream.log
|