--- base_model: - benhaotang/Phi-4-llama-t1-full - prithivMLmods/Phi-4-QwQ - win10/Phi-4-llama-t1-lora library_name: transformers tags: - mergekit - merge datasets: - NovaSky-AI/Sky-T1_data_17k license: mit model-index: - name: phi4-qwq-sky-t1 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 4.6 name: averaged accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 52.61 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 39.58 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 19.35 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 21.38 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 47.16 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=benhaotang%2Fphi4-qwq-sky-t1 name: Open LLM Leaderboard --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [prithivMLmods/Phi-4-QwQ](https://huggingface.co./prithivMLmods/Phi-4-QwQ) as a base. ### Models Merged The following models were included in the merge: * [benhaotang/Phi-4-llama-t1-full](https://huggingface.co./benhaotang/Phi-4-llama-t1-full) but actually [win10/Phi-4-llama-t1-lora](https://huggingface.co./win10/Phi-4-llama-t1-lora), this is who and where you should really thank. * [prithivMLmods/Phi-4-QwQ](https://huggingface.co./prithivMLmods/Phi-4-QwQ) ### Running - With Ollama ``` ollama run hf.co/benhaotang/phi4-qwq-sky-t1-Q4_K_M-GGUF ``` I suggest adding `SYSTEM "You are a helpful AI asistent. You always think step by step."` to triger step by step reasoning. - With pytorch ``` import transformers tokenizer = AutoTokenizer.from_pretrained("mircosoft/phi-4") pipeline = transformers.pipeline( "text-generation", model="benhaotang/phi4-qwq-sky-t1", tokenizer=tokenizer, device_map="auto", ) messages = [ {"role": "system", "content": "You are a helpful AI asistent. You always think step by step."}, {"role": "user", "content": "Give me a short intodcution to renormalization group(RG) flow in physcis?"}, ] outputs = pipeline(messages, max_new_tokens=128) print(outputs[0]["generated_text"]) ``` ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: prithivMLmods/Phi-4-QwQ #no parameters necessary for base model - model: benhaotang/Phi-4-llama-t1-full parameters: density: 0.5 weight: 0.5 - model: prithivMLmods/Phi-4-QwQ parameters: density: 0.5 weight: 0.5 merge_method: ties base_model: prithivMLmods/Phi-4-QwQ parameters: normalize: false int8_mask: true dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/benhaotang__phi4-qwq-sky-t1-details)! Summarized results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/contents/viewer/default/train?q=benhaotang%2Fphi4-qwq-sky-t1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)! | Metric |Value (%)| |-------------------|--------:| |**Average** | 30.78| |IFEval (0-Shot) | 4.60| |BBH (3-Shot) | 52.61| |MATH Lvl 5 (4-Shot)| 39.58| |GPQA (0-shot) | 19.35| |MuSR (0-shot) | 21.38| |MMLU-PRO (5-shot) | 47.16|