--- language: mn license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_multiple_datasets datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs - bayartsogt/ulaanbal-v0 - bayartsogt/youtube-mongolian-v1 metrics: - wer - cer model-index: - name: whisper-tiny-mn-9 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test metrics: - type: wer value: 45.51015949311776 name: Wer - type: cer value: 17.33769077861258 name: Cer --- # whisper-tiny-mn-9 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3885 - Wer: 45.5102 - Cer: 17.3377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.587 | 0.69 | 1000 | 0.6937 | 75.6336 | 29.6764 | | 0.4536 | 1.39 | 2000 | 0.5539 | 64.8187 | 24.8324 | | 0.3798 | 2.08 | 3000 | 0.4963 | 57.7944 | 22.1842 | | 0.3423 | 2.77 | 4000 | 0.4661 | 54.3751 | 20.9705 | | 0.3122 | 3.47 | 5000 | 0.4449 | 52.5945 | 20.3405 | | 0.3002 | 4.16 | 6000 | 0.4285 | 50.5080 | 19.3499 | | 0.2842 | 4.85 | 7000 | 0.4171 | 49.3937 | 19.0282 | | 0.2655 | 5.54 | 8000 | 0.4099 | 48.6727 | 18.6045 | | 0.2555 | 6.24 | 9000 | 0.4035 | 48.2084 | 18.3392 | | 0.2525 | 6.93 | 10000 | 0.3990 | 47.3290 | 17.8338 | | 0.243 | 7.62 | 11000 | 0.3963 | 47.0559 | 18.2524 | | 0.2358 | 8.32 | 12000 | 0.3948 | 46.7337 | 17.8186 | | 0.2288 | 9.01 | 13000 | 0.3901 | 46.5480 | 17.9172 | | 0.2171 | 9.7 | 14000 | 0.3910 | 46.0236 | 17.6266 | | 0.2184 | 10.4 | 15000 | 0.3904 | 46.4387 | 17.8228 | | 0.2099 | 11.09 | 16000 | 0.3893 | 45.9744 | 17.4379 | | 0.216 | 11.78 | 17000 | 0.3889 | 45.6194 | 17.2939 | | 0.2095 | 12.47 | 18000 | 0.3895 | 45.7887 | 17.4438 | | 0.2056 | 13.17 | 19000 | 0.3882 | 45.6085 | 17.2888 | | 0.2064 | 13.86 | 20000 | 0.3885 | 45.5102 | 17.3377 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2