--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_shuffle_punc_eval results: [] --- # angela_shuffle_punc_eval This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co./Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2116 - Precision: 0.3859 - Recall: 0.3254 - F1: 0.3531 - Accuracy: 0.9334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1711 | 1.0 | 1283 | 0.1840 | 0.3850 | 0.1896 | 0.2540 | 0.9369 | | 0.1439 | 2.0 | 2566 | 0.1923 | 0.3887 | 0.2629 | 0.3137 | 0.9331 | | 0.1248 | 3.0 | 3849 | 0.2008 | 0.4106 | 0.2615 | 0.3195 | 0.9373 | | 0.1076 | 4.0 | 5132 | 0.2012 | 0.3800 | 0.3472 | 0.3628 | 0.9318 | | 0.089 | 5.0 | 6415 | 0.2116 | 0.3859 | 0.3254 | 0.3531 | 0.9334 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3