--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_shuffle_diacritics_entities_test results: [] --- # angela_shuffle_diacritics_entities_test This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co./Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1642 - Precision: 0.4241 - Recall: 0.3051 - F1: 0.3549 - Accuracy: 0.9552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1481 | 1.0 | 1283 | 0.1381 | 0.4423 | 0.2037 | 0.2789 | 0.9570 | | 0.1258 | 2.0 | 2566 | 0.1329 | 0.4983 | 0.2396 | 0.3236 | 0.9592 | | 0.1074 | 3.0 | 3849 | 0.1416 | 0.4748 | 0.2590 | 0.3352 | 0.9584 | | 0.0853 | 4.0 | 5132 | 0.1523 | 0.4258 | 0.3156 | 0.3625 | 0.9552 | | 0.0692 | 5.0 | 6415 | 0.1642 | 0.4241 | 0.3051 | 0.3549 | 0.9552 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3