--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_punc_diacritics_eval results: [] --- # angela_punc_diacritics_eval This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co./Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4701 - Precision: 0.3989 - Recall: 0.1391 - F1: 0.2063 - Accuracy: 0.8917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1546 | 1.0 | 1283 | 0.3076 | 0.3776 | 0.0726 | 0.1217 | 0.8920 | | 0.1327 | 2.0 | 2566 | 0.3372 | 0.4254 | 0.0843 | 0.1407 | 0.8932 | | 0.1147 | 3.0 | 3849 | 0.3472 | 0.4208 | 0.1170 | 0.1831 | 0.8932 | | 0.0934 | 4.0 | 5132 | 0.4240 | 0.4193 | 0.1219 | 0.1889 | 0.8932 | | 0.0773 | 5.0 | 6415 | 0.4701 | 0.3989 | 0.1391 | 0.2063 | 0.8917 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3