awsuineg commited on
Commit
3c9a152
·
verified ·
1 Parent(s): a6dc251

Model save

Browse files
Files changed (4) hide show
  1. README.md +66 -0
  2. all_results.json +9 -0
  3. train_results.json +9 -0
  4. trainer_state.json +2472 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-v0.1
3
+ library_name: transformers
4
+ model_name: zephyr-orpo-7b-hehe
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - orpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for zephyr-orpo-7b-hehe
13
+
14
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="awsuineg/zephyr-orpo-7b-hehe", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+
31
+
32
+ This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691).
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.12.1
37
+ - Transformers: 4.46.2
38
+ - Pytorch: 2.5.1
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.20.3
41
+
42
+ ## Citations
43
+
44
+ Cite ORPO as:
45
+
46
+ ```bibtex
47
+ @article{hong2024orpo,
48
+ title = {{ORPO: Monolithic Preference Optimization without Reference Model}},
49
+ author = {Jiwoo Hong and Noah Lee and James Thorne},
50
+ year = 2024,
51
+ eprint = {arXiv:2403.07691}
52
+ }
53
+ ```
54
+
55
+ Cite TRL as:
56
+
57
+ ```bibtex
58
+ @misc{vonwerra2022trl,
59
+ title = {{TRL: Transformer Reinforcement Learning}},
60
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
61
+ year = 2020,
62
+ journal = {GitHub repository},
63
+ publisher = {GitHub},
64
+ howpublished = {\url{https://github.com/huggingface/trl}}
65
+ }
66
+ ```
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 0.0,
4
+ "train_loss": 1.4294498003771459,
5
+ "train_runtime": 7808.9602,
6
+ "train_samples": 7210,
7
+ "train_samples_per_second": 2.77,
8
+ "train_steps_per_second": 0.173
9
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 0.0,
4
+ "train_loss": 1.4294498003771459,
5
+ "train_runtime": 7808.9602,
6
+ "train_samples": 7210,
7
+ "train_samples_per_second": 2.77,
8
+ "train_steps_per_second": 0.173
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,2472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 1353,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.022172949002217297,
13
+ "grad_norm": NaN,
14
+ "learning_rate": 1.9512195121951218e-06,
15
+ "log_odds_chosen": NaN,
16
+ "log_odds_ratio": NaN,
17
+ "logits/chosen": -2.5637989044189453,
18
+ "logits/rejected": -2.5734333992004395,
19
+ "logps/chosen": NaN,
20
+ "logps/rejected": NaN,
21
+ "loss": 1.8527,
22
+ "nll_loss": 1.088592767715454,
23
+ "rewards/accuracies": 0.512499988079071,
24
+ "rewards/chosen": NaN,
25
+ "rewards/margins": NaN,
26
+ "rewards/rejected": NaN,
27
+ "step": 10
28
+ },
29
+ {
30
+ "epoch": 0.04434589800443459,
31
+ "grad_norm": NaN,
32
+ "learning_rate": 3.9024390243902435e-06,
33
+ "log_odds_chosen": NaN,
34
+ "log_odds_ratio": NaN,
35
+ "logits/chosen": -2.5235965251922607,
36
+ "logits/rejected": -2.5694117546081543,
37
+ "logps/chosen": NaN,
38
+ "logps/rejected": NaN,
39
+ "loss": 1.6216,
40
+ "nll_loss": 1.042040467262268,
41
+ "rewards/accuracies": 0.612500011920929,
42
+ "rewards/chosen": NaN,
43
+ "rewards/margins": NaN,
44
+ "rewards/rejected": NaN,
45
+ "step": 20
46
+ },
47
+ {
48
+ "epoch": 0.06651884700665188,
49
+ "grad_norm": 0.7492002248764038,
50
+ "learning_rate": 5.853658536585366e-06,
51
+ "log_odds_chosen": NaN,
52
+ "log_odds_ratio": NaN,
53
+ "logits/chosen": -2.439809560775757,
54
+ "logits/rejected": -2.4339804649353027,
55
+ "logps/chosen": NaN,
56
+ "logps/rejected": NaN,
57
+ "loss": 1.3856,
58
+ "nll_loss": 1.040069818496704,
59
+ "rewards/accuracies": 0.5625,
60
+ "rewards/chosen": NaN,
61
+ "rewards/margins": NaN,
62
+ "rewards/rejected": NaN,
63
+ "step": 30
64
+ },
65
+ {
66
+ "epoch": 0.08869179600886919,
67
+ "grad_norm": NaN,
68
+ "learning_rate": 7.804878048780487e-06,
69
+ "log_odds_chosen": NaN,
70
+ "log_odds_ratio": NaN,
71
+ "logits/chosen": -2.5076301097869873,
72
+ "logits/rejected": -2.538536310195923,
73
+ "logps/chosen": NaN,
74
+ "logps/rejected": NaN,
75
+ "loss": 1.5238,
76
+ "nll_loss": 1.0452662706375122,
77
+ "rewards/accuracies": 0.637499988079071,
78
+ "rewards/chosen": NaN,
79
+ "rewards/margins": NaN,
80
+ "rewards/rejected": NaN,
81
+ "step": 40
82
+ },
83
+ {
84
+ "epoch": 0.11086474501108648,
85
+ "grad_norm": NaN,
86
+ "learning_rate": 7.999071182730533e-06,
87
+ "log_odds_chosen": NaN,
88
+ "log_odds_ratio": NaN,
89
+ "logits/chosen": -2.5563275814056396,
90
+ "logits/rejected": -2.5710463523864746,
91
+ "logps/chosen": NaN,
92
+ "logps/rejected": NaN,
93
+ "loss": 1.7136,
94
+ "nll_loss": 0.9837453961372375,
95
+ "rewards/accuracies": 0.574999988079071,
96
+ "rewards/chosen": NaN,
97
+ "rewards/margins": NaN,
98
+ "rewards/rejected": NaN,
99
+ "step": 50
100
+ },
101
+ {
102
+ "epoch": 0.13303769401330376,
103
+ "grad_norm": NaN,
104
+ "learning_rate": 7.995861010152277e-06,
105
+ "log_odds_chosen": NaN,
106
+ "log_odds_ratio": NaN,
107
+ "logits/chosen": -2.422978162765503,
108
+ "logits/rejected": -2.497622013092041,
109
+ "logps/chosen": NaN,
110
+ "logps/rejected": NaN,
111
+ "loss": 1.4346,
112
+ "nll_loss": 1.1125876903533936,
113
+ "rewards/accuracies": 0.6000000238418579,
114
+ "rewards/chosen": NaN,
115
+ "rewards/margins": NaN,
116
+ "rewards/rejected": NaN,
117
+ "step": 60
118
+ },
119
+ {
120
+ "epoch": 0.15521064301552107,
121
+ "grad_norm": NaN,
122
+ "learning_rate": 7.990359855463492e-06,
123
+ "log_odds_chosen": NaN,
124
+ "log_odds_ratio": NaN,
125
+ "logits/chosen": -2.4739160537719727,
126
+ "logits/rejected": -2.5015368461608887,
127
+ "logps/chosen": NaN,
128
+ "logps/rejected": NaN,
129
+ "loss": 1.7054,
130
+ "nll_loss": 1.0281422138214111,
131
+ "rewards/accuracies": 0.5,
132
+ "rewards/chosen": NaN,
133
+ "rewards/margins": NaN,
134
+ "rewards/rejected": NaN,
135
+ "step": 70
136
+ },
137
+ {
138
+ "epoch": 0.17738359201773837,
139
+ "grad_norm": NaN,
140
+ "learning_rate": 7.982570872689543e-06,
141
+ "log_odds_chosen": NaN,
142
+ "log_odds_ratio": NaN,
143
+ "logits/chosen": -2.5495190620422363,
144
+ "logits/rejected": -2.5661299228668213,
145
+ "logps/chosen": NaN,
146
+ "logps/rejected": NaN,
147
+ "loss": 1.9447,
148
+ "nll_loss": 1.0821787118911743,
149
+ "rewards/accuracies": 0.550000011920929,
150
+ "rewards/chosen": NaN,
151
+ "rewards/margins": NaN,
152
+ "rewards/rejected": NaN,
153
+ "step": 80
154
+ },
155
+ {
156
+ "epoch": 0.19955654101995565,
157
+ "grad_norm": NaN,
158
+ "learning_rate": 7.972498527556375e-06,
159
+ "log_odds_chosen": NaN,
160
+ "log_odds_ratio": NaN,
161
+ "logits/chosen": -2.539638042449951,
162
+ "logits/rejected": -2.565432071685791,
163
+ "logps/chosen": NaN,
164
+ "logps/rejected": NaN,
165
+ "loss": 1.4908,
166
+ "nll_loss": 1.0412414073944092,
167
+ "rewards/accuracies": 0.6875,
168
+ "rewards/chosen": NaN,
169
+ "rewards/margins": NaN,
170
+ "rewards/rejected": NaN,
171
+ "step": 90
172
+ },
173
+ {
174
+ "epoch": 0.22172949002217296,
175
+ "grad_norm": NaN,
176
+ "learning_rate": 7.960148594930148e-06,
177
+ "log_odds_chosen": NaN,
178
+ "log_odds_ratio": NaN,
179
+ "logits/chosen": -2.5148587226867676,
180
+ "logits/rejected": -2.531787395477295,
181
+ "logps/chosen": NaN,
182
+ "logps/rejected": NaN,
183
+ "loss": 1.3802,
184
+ "nll_loss": 1.0808457136154175,
185
+ "rewards/accuracies": 0.550000011920929,
186
+ "rewards/chosen": NaN,
187
+ "rewards/margins": NaN,
188
+ "rewards/rejected": NaN,
189
+ "step": 100
190
+ },
191
+ {
192
+ "epoch": 0.24390243902439024,
193
+ "grad_norm": NaN,
194
+ "learning_rate": 7.945528155506268e-06,
195
+ "log_odds_chosen": NaN,
196
+ "log_odds_ratio": NaN,
197
+ "logits/chosen": -2.4936861991882324,
198
+ "logits/rejected": -2.5372276306152344,
199
+ "logps/chosen": NaN,
200
+ "logps/rejected": NaN,
201
+ "loss": 1.4052,
202
+ "nll_loss": 1.0503720045089722,
203
+ "rewards/accuracies": 0.6499999761581421,
204
+ "rewards/chosen": NaN,
205
+ "rewards/margins": NaN,
206
+ "rewards/rejected": NaN,
207
+ "step": 110
208
+ },
209
+ {
210
+ "epoch": 0.2660753880266075,
211
+ "grad_norm": NaN,
212
+ "learning_rate": 7.928645591749765e-06,
213
+ "log_odds_chosen": NaN,
214
+ "log_odds_ratio": NaN,
215
+ "logits/chosen": -2.5514473915100098,
216
+ "logits/rejected": -2.5984888076782227,
217
+ "logps/chosen": NaN,
218
+ "logps/rejected": NaN,
219
+ "loss": 1.6079,
220
+ "nll_loss": 1.0542423725128174,
221
+ "rewards/accuracies": 0.574999988079071,
222
+ "rewards/chosen": NaN,
223
+ "rewards/margins": NaN,
224
+ "rewards/rejected": NaN,
225
+ "step": 120
226
+ },
227
+ {
228
+ "epoch": 0.28824833702882485,
229
+ "grad_norm": NaN,
230
+ "learning_rate": 7.909510583089285e-06,
231
+ "log_odds_chosen": NaN,
232
+ "log_odds_ratio": NaN,
233
+ "logits/chosen": -2.513597011566162,
234
+ "logits/rejected": -2.509930372238159,
235
+ "logps/chosen": NaN,
236
+ "logps/rejected": NaN,
237
+ "loss": 1.4307,
238
+ "nll_loss": 0.9876394271850586,
239
+ "rewards/accuracies": 0.625,
240
+ "rewards/chosen": NaN,
241
+ "rewards/margins": NaN,
242
+ "rewards/rejected": NaN,
243
+ "step": 130
244
+ },
245
+ {
246
+ "epoch": 0.31042128603104213,
247
+ "grad_norm": 0.5560552477836609,
248
+ "learning_rate": 7.888134100367517e-06,
249
+ "log_odds_chosen": NaN,
250
+ "log_odds_ratio": NaN,
251
+ "logits/chosen": -2.5325217247009277,
252
+ "logits/rejected": -2.5615830421447754,
253
+ "logps/chosen": NaN,
254
+ "logps/rejected": NaN,
255
+ "loss": 1.5637,
256
+ "nll_loss": 1.090905785560608,
257
+ "rewards/accuracies": 0.6000000238418579,
258
+ "rewards/chosen": NaN,
259
+ "rewards/margins": NaN,
260
+ "rewards/rejected": NaN,
261
+ "step": 140
262
+ },
263
+ {
264
+ "epoch": 0.3325942350332594,
265
+ "grad_norm": NaN,
266
+ "learning_rate": 7.864528399551163e-06,
267
+ "log_odds_chosen": NaN,
268
+ "log_odds_ratio": NaN,
269
+ "logits/chosen": -2.5349364280700684,
270
+ "logits/rejected": -2.555640459060669,
271
+ "logps/chosen": NaN,
272
+ "logps/rejected": NaN,
273
+ "loss": 1.2739,
274
+ "nll_loss": 0.984653115272522,
275
+ "rewards/accuracies": 0.612500011920929,
276
+ "rewards/chosen": NaN,
277
+ "rewards/margins": NaN,
278
+ "rewards/rejected": NaN,
279
+ "step": 150
280
+ },
281
+ {
282
+ "epoch": 0.35476718403547675,
283
+ "grad_norm": 0.49410519003868103,
284
+ "learning_rate": 7.83870701470413e-06,
285
+ "log_odds_chosen": NaN,
286
+ "log_odds_ratio": NaN,
287
+ "logits/chosen": -2.579796075820923,
288
+ "logits/rejected": -2.6130154132843018,
289
+ "logps/chosen": NaN,
290
+ "logps/rejected": NaN,
291
+ "loss": 1.6816,
292
+ "nll_loss": 0.9771108627319336,
293
+ "rewards/accuracies": 0.637499988079071,
294
+ "rewards/chosen": NaN,
295
+ "rewards/margins": NaN,
296
+ "rewards/rejected": NaN,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.376940133037694,
301
+ "grad_norm": NaN,
302
+ "learning_rate": 7.810684750227926e-06,
303
+ "log_odds_chosen": NaN,
304
+ "log_odds_ratio": NaN,
305
+ "logits/chosen": -2.5355019569396973,
306
+ "logits/rejected": -2.5664353370666504,
307
+ "logps/chosen": NaN,
308
+ "logps/rejected": NaN,
309
+ "loss": 1.4045,
310
+ "nll_loss": 0.9972349405288696,
311
+ "rewards/accuracies": 0.6000000238418579,
312
+ "rewards/chosen": NaN,
313
+ "rewards/margins": NaN,
314
+ "rewards/rejected": NaN,
315
+ "step": 170
316
+ },
317
+ {
318
+ "epoch": 0.3991130820399113,
319
+ "grad_norm": NaN,
320
+ "learning_rate": 7.780477672373715e-06,
321
+ "log_odds_chosen": NaN,
322
+ "log_odds_ratio": NaN,
323
+ "logits/chosen": -2.610077381134033,
324
+ "logits/rejected": -2.6662240028381348,
325
+ "logps/chosen": NaN,
326
+ "logps/rejected": NaN,
327
+ "loss": 1.3857,
328
+ "nll_loss": 0.9627612829208374,
329
+ "rewards/accuracies": 0.637499988079071,
330
+ "rewards/chosen": NaN,
331
+ "rewards/margins": NaN,
332
+ "rewards/rejected": NaN,
333
+ "step": 180
334
+ },
335
+ {
336
+ "epoch": 0.4212860310421286,
337
+ "grad_norm": NaN,
338
+ "learning_rate": 7.748103100030918e-06,
339
+ "log_odds_chosen": NaN,
340
+ "log_odds_ratio": NaN,
341
+ "logits/chosen": -2.5606350898742676,
342
+ "logits/rejected": -2.599088430404663,
343
+ "logps/chosen": NaN,
344
+ "logps/rejected": NaN,
345
+ "loss": 1.7501,
346
+ "nll_loss": 0.9361652135848999,
347
+ "rewards/accuracies": 0.574999988079071,
348
+ "rewards/chosen": NaN,
349
+ "rewards/margins": NaN,
350
+ "rewards/rejected": NaN,
351
+ "step": 190
352
+ },
353
+ {
354
+ "epoch": 0.4434589800443459,
355
+ "grad_norm": NaN,
356
+ "learning_rate": 7.713579594797617e-06,
357
+ "log_odds_chosen": NaN,
358
+ "log_odds_ratio": NaN,
359
+ "logits/chosen": -2.5864617824554443,
360
+ "logits/rejected": -2.6177988052368164,
361
+ "logps/chosen": NaN,
362
+ "logps/rejected": NaN,
363
+ "loss": 1.5321,
364
+ "nll_loss": 0.9839666485786438,
365
+ "rewards/accuracies": 0.550000011920929,
366
+ "rewards/chosen": NaN,
367
+ "rewards/margins": NaN,
368
+ "rewards/rejected": NaN,
369
+ "step": 200
370
+ },
371
+ {
372
+ "epoch": 0.4656319290465632,
373
+ "grad_norm": NaN,
374
+ "learning_rate": 7.676926950338484e-06,
375
+ "log_odds_chosen": NaN,
376
+ "log_odds_ratio": NaN,
377
+ "logits/chosen": -2.5560379028320312,
378
+ "logits/rejected": -2.6088876724243164,
379
+ "logps/chosen": NaN,
380
+ "logps/rejected": NaN,
381
+ "loss": 1.4582,
382
+ "nll_loss": 0.9833539724349976,
383
+ "rewards/accuracies": 0.625,
384
+ "rewards/chosen": NaN,
385
+ "rewards/margins": NaN,
386
+ "rewards/rejected": NaN,
387
+ "step": 210
388
+ },
389
+ {
390
+ "epoch": 0.4878048780487805,
391
+ "grad_norm": NaN,
392
+ "learning_rate": 7.638166181036278e-06,
393
+ "log_odds_chosen": NaN,
394
+ "log_odds_ratio": NaN,
395
+ "logits/chosen": -2.6120612621307373,
396
+ "logits/rejected": -2.648507595062256,
397
+ "logps/chosen": NaN,
398
+ "logps/rejected": NaN,
399
+ "loss": 1.7413,
400
+ "nll_loss": 0.9990829229354858,
401
+ "rewards/accuracies": 0.550000011920929,
402
+ "rewards/chosen": NaN,
403
+ "rewards/margins": NaN,
404
+ "rewards/rejected": NaN,
405
+ "step": 220
406
+ },
407
+ {
408
+ "epoch": 0.5099778270509978,
409
+ "grad_norm": NaN,
410
+ "learning_rate": 7.597319509943522e-06,
411
+ "log_odds_chosen": NaN,
412
+ "log_odds_ratio": NaN,
413
+ "logits/chosen": -2.5437393188476562,
414
+ "logits/rejected": -2.5923430919647217,
415
+ "logps/chosen": NaN,
416
+ "logps/rejected": NaN,
417
+ "loss": 1.3477,
418
+ "nll_loss": 0.9254695177078247,
419
+ "rewards/accuracies": 0.550000011920929,
420
+ "rewards/chosen": NaN,
421
+ "rewards/margins": NaN,
422
+ "rewards/rejected": NaN,
423
+ "step": 230
424
+ },
425
+ {
426
+ "epoch": 0.532150776053215,
427
+ "grad_norm": NaN,
428
+ "learning_rate": 7.554410356041128e-06,
429
+ "log_odds_chosen": NaN,
430
+ "log_odds_ratio": NaN,
431
+ "logits/chosen": -2.5858166217803955,
432
+ "logits/rejected": -2.645839214324951,
433
+ "logps/chosen": NaN,
434
+ "logps/rejected": NaN,
435
+ "loss": 1.8364,
436
+ "nll_loss": 0.9360870122909546,
437
+ "rewards/accuracies": 0.6000000238418579,
438
+ "rewards/chosen": NaN,
439
+ "rewards/margins": NaN,
440
+ "rewards/rejected": NaN,
441
+ "step": 240
442
+ },
443
+ {
444
+ "epoch": 0.5543237250554324,
445
+ "grad_norm": NaN,
446
+ "learning_rate": 7.509463320811409e-06,
447
+ "log_odds_chosen": NaN,
448
+ "log_odds_ratio": NaN,
449
+ "logits/chosen": -2.603842258453369,
450
+ "logits/rejected": -2.65669584274292,
451
+ "logps/chosen": NaN,
452
+ "logps/rejected": NaN,
453
+ "loss": 1.9066,
454
+ "nll_loss": 0.8704744577407837,
455
+ "rewards/accuracies": 0.612500011920929,
456
+ "rewards/chosen": NaN,
457
+ "rewards/margins": NaN,
458
+ "rewards/rejected": NaN,
459
+ "step": 250
460
+ },
461
+ {
462
+ "epoch": 0.5764966740576497,
463
+ "grad_norm": NaN,
464
+ "learning_rate": 7.462504174133093e-06,
465
+ "log_odds_chosen": NaN,
466
+ "log_odds_ratio": NaN,
467
+ "logits/chosen": -2.5409696102142334,
468
+ "logits/rejected": -2.58134388923645,
469
+ "logps/chosen": NaN,
470
+ "logps/rejected": NaN,
471
+ "loss": 1.4614,
472
+ "nll_loss": 0.8922187685966492,
473
+ "rewards/accuracies": 0.625,
474
+ "rewards/chosen": NaN,
475
+ "rewards/margins": NaN,
476
+ "rewards/rejected": NaN,
477
+ "step": 260
478
+ },
479
+ {
480
+ "epoch": 0.5986696230598669,
481
+ "grad_norm": NaN,
482
+ "learning_rate": 7.413559839506442e-06,
483
+ "log_odds_chosen": NaN,
484
+ "log_odds_ratio": NaN,
485
+ "logits/chosen": -2.6056294441223145,
486
+ "logits/rejected": -2.59102725982666,
487
+ "logps/chosen": NaN,
488
+ "logps/rejected": NaN,
489
+ "loss": 1.4101,
490
+ "nll_loss": 0.9519271850585938,
491
+ "rewards/accuracies": 0.512499988079071,
492
+ "rewards/chosen": NaN,
493
+ "rewards/margins": NaN,
494
+ "rewards/rejected": NaN,
495
+ "step": 270
496
+ },
497
+ {
498
+ "epoch": 0.6208425720620843,
499
+ "grad_norm": NaN,
500
+ "learning_rate": 7.362658378616977e-06,
501
+ "log_odds_chosen": NaN,
502
+ "log_odds_ratio": NaN,
503
+ "logits/chosen": -2.518075942993164,
504
+ "logits/rejected": -2.5656614303588867,
505
+ "logps/chosen": NaN,
506
+ "logps/rejected": NaN,
507
+ "loss": 1.7219,
508
+ "nll_loss": 0.9626830816268921,
509
+ "rewards/accuracies": 0.675000011920929,
510
+ "rewards/chosen": NaN,
511
+ "rewards/margins": NaN,
512
+ "rewards/rejected": NaN,
513
+ "step": 280
514
+ },
515
+ {
516
+ "epoch": 0.6430155210643016,
517
+ "grad_norm": NaN,
518
+ "learning_rate": 7.309828975246615e-06,
519
+ "log_odds_chosen": NaN,
520
+ "log_odds_ratio": NaN,
521
+ "logits/chosen": -2.478224277496338,
522
+ "logits/rejected": -2.4818527698516846,
523
+ "logps/chosen": NaN,
524
+ "logps/rejected": NaN,
525
+ "loss": 1.4698,
526
+ "nll_loss": 0.9482153654098511,
527
+ "rewards/accuracies": 0.637499988079071,
528
+ "rewards/chosen": NaN,
529
+ "rewards/margins": NaN,
530
+ "rewards/rejected": NaN,
531
+ "step": 290
532
+ },
533
+ {
534
+ "epoch": 0.6651884700665188,
535
+ "grad_norm": NaN,
536
+ "learning_rate": 7.255101918541482e-06,
537
+ "log_odds_chosen": NaN,
538
+ "log_odds_ratio": NaN,
539
+ "logits/chosen": -2.5367703437805176,
540
+ "logits/rejected": -2.618227005004883,
541
+ "logps/chosen": NaN,
542
+ "logps/rejected": NaN,
543
+ "loss": 1.3779,
544
+ "nll_loss": 0.9249935150146484,
545
+ "rewards/accuracies": 0.612500011920929,
546
+ "rewards/chosen": NaN,
547
+ "rewards/margins": NaN,
548
+ "rewards/rejected": NaN,
549
+ "step": 300
550
+ },
551
+ {
552
+ "epoch": 0.6873614190687362,
553
+ "grad_norm": NaN,
554
+ "learning_rate": 7.198508585645966e-06,
555
+ "log_odds_chosen": NaN,
556
+ "log_odds_ratio": NaN,
557
+ "logits/chosen": -2.498709201812744,
558
+ "logits/rejected": -2.5306169986724854,
559
+ "logps/chosen": NaN,
560
+ "logps/rejected": NaN,
561
+ "loss": 1.4247,
562
+ "nll_loss": 0.9907130002975464,
563
+ "rewards/accuracies": 0.6000000238418579,
564
+ "rewards/chosen": NaN,
565
+ "rewards/margins": NaN,
566
+ "rewards/rejected": NaN,
567
+ "step": 310
568
+ },
569
+ {
570
+ "epoch": 0.7095343680709535,
571
+ "grad_norm": 0.5340009331703186,
572
+ "learning_rate": 7.140081423712985e-06,
573
+ "log_odds_chosen": NaN,
574
+ "log_odds_ratio": NaN,
575
+ "logits/chosen": -2.576976776123047,
576
+ "logits/rejected": -2.5837340354919434,
577
+ "logps/chosen": NaN,
578
+ "logps/rejected": NaN,
579
+ "loss": 1.3265,
580
+ "nll_loss": 0.9744553565979004,
581
+ "rewards/accuracies": 0.5375000238418579,
582
+ "rewards/chosen": NaN,
583
+ "rewards/margins": NaN,
584
+ "rewards/rejected": NaN,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.7317073170731707,
589
+ "grad_norm": NaN,
590
+ "learning_rate": 7.079853931300778e-06,
591
+ "log_odds_chosen": NaN,
592
+ "log_odds_ratio": NaN,
593
+ "logits/chosen": -2.5235087871551514,
594
+ "logits/rejected": -2.537680149078369,
595
+ "logps/chosen": NaN,
596
+ "logps/rejected": NaN,
597
+ "loss": 1.3516,
598
+ "nll_loss": 0.9415532350540161,
599
+ "rewards/accuracies": 0.612500011920929,
600
+ "rewards/chosen": NaN,
601
+ "rewards/margins": NaN,
602
+ "rewards/rejected": NaN,
603
+ "step": 330
604
+ },
605
+ {
606
+ "epoch": 0.753880266075388,
607
+ "grad_norm": NaN,
608
+ "learning_rate": 7.017860639166877e-06,
609
+ "log_odds_chosen": NaN,
610
+ "log_odds_ratio": NaN,
611
+ "logits/chosen": -2.561636447906494,
612
+ "logits/rejected": -2.6029891967773438,
613
+ "logps/chosen": NaN,
614
+ "logps/rejected": NaN,
615
+ "loss": 1.0444,
616
+ "nll_loss": 0.87201327085495,
617
+ "rewards/accuracies": 0.625,
618
+ "rewards/chosen": NaN,
619
+ "rewards/margins": NaN,
620
+ "rewards/rejected": NaN,
621
+ "step": 340
622
+ },
623
+ {
624
+ "epoch": 0.7760532150776053,
625
+ "grad_norm": NaN,
626
+ "learning_rate": 6.95413709047029e-06,
627
+ "log_odds_chosen": NaN,
628
+ "log_odds_ratio": NaN,
629
+ "logits/chosen": -2.6087021827697754,
630
+ "logits/rejected": -2.631678342819214,
631
+ "logps/chosen": NaN,
632
+ "logps/rejected": NaN,
633
+ "loss": 1.241,
634
+ "nll_loss": 0.9579289555549622,
635
+ "rewards/accuracies": 0.574999988079071,
636
+ "rewards/chosen": NaN,
637
+ "rewards/margins": NaN,
638
+ "rewards/rejected": NaN,
639
+ "step": 350
640
+ },
641
+ {
642
+ "epoch": 0.7982261640798226,
643
+ "grad_norm": 0.6355442404747009,
644
+ "learning_rate": 6.888719820393224e-06,
645
+ "log_odds_chosen": NaN,
646
+ "log_odds_ratio": NaN,
647
+ "logits/chosen": -2.5300655364990234,
648
+ "logits/rejected": -2.538252592086792,
649
+ "logps/chosen": NaN,
650
+ "logps/rejected": NaN,
651
+ "loss": 1.1996,
652
+ "nll_loss": 0.9421980977058411,
653
+ "rewards/accuracies": 0.550000011920929,
654
+ "rewards/chosen": NaN,
655
+ "rewards/margins": NaN,
656
+ "rewards/rejected": NaN,
657
+ "step": 360
658
+ },
659
+ {
660
+ "epoch": 0.8203991130820399,
661
+ "grad_norm": NaN,
662
+ "learning_rate": 6.821646335194051e-06,
663
+ "log_odds_chosen": NaN,
664
+ "log_odds_ratio": NaN,
665
+ "logits/chosen": -2.4321510791778564,
666
+ "logits/rejected": -2.488974094390869,
667
+ "logps/chosen": NaN,
668
+ "logps/rejected": NaN,
669
+ "loss": 1.5151,
670
+ "nll_loss": 0.9701131582260132,
671
+ "rewards/accuracies": 0.6625000238418579,
672
+ "rewards/chosen": NaN,
673
+ "rewards/margins": NaN,
674
+ "rewards/rejected": NaN,
675
+ "step": 370
676
+ },
677
+ {
678
+ "epoch": 0.8425720620842572,
679
+ "grad_norm": NaN,
680
+ "learning_rate": 6.752955090703516e-06,
681
+ "log_odds_chosen": NaN,
682
+ "log_odds_ratio": NaN,
683
+ "logits/chosen": -2.5075130462646484,
684
+ "logits/rejected": -2.576809883117676,
685
+ "logps/chosen": NaN,
686
+ "logps/rejected": NaN,
687
+ "loss": 1.6486,
688
+ "nll_loss": 0.8745073080062866,
689
+ "rewards/accuracies": 0.699999988079071,
690
+ "rewards/chosen": NaN,
691
+ "rewards/margins": NaN,
692
+ "rewards/rejected": NaN,
693
+ "step": 380
694
+ },
695
+ {
696
+ "epoch": 0.8647450110864745,
697
+ "grad_norm": NaN,
698
+ "learning_rate": 6.682685470276513e-06,
699
+ "log_odds_chosen": NaN,
700
+ "log_odds_ratio": NaN,
701
+ "logits/chosen": -2.609452247619629,
702
+ "logits/rejected": -2.6642494201660156,
703
+ "logps/chosen": NaN,
704
+ "logps/rejected": NaN,
705
+ "loss": 1.6961,
706
+ "nll_loss": 0.8854317665100098,
707
+ "rewards/accuracies": 0.574999988079071,
708
+ "rewards/chosen": NaN,
709
+ "rewards/margins": NaN,
710
+ "rewards/rejected": NaN,
711
+ "step": 390
712
+ },
713
+ {
714
+ "epoch": 0.8869179600886918,
715
+ "grad_norm": 0.49902427196502686,
716
+ "learning_rate": 6.610877762212086e-06,
717
+ "log_odds_chosen": NaN,
718
+ "log_odds_ratio": NaN,
719
+ "logits/chosen": -2.5146374702453613,
720
+ "logits/rejected": -2.529111385345459,
721
+ "logps/chosen": NaN,
722
+ "logps/rejected": NaN,
723
+ "loss": 1.2123,
724
+ "nll_loss": 0.9021833539009094,
725
+ "rewards/accuracies": 0.612500011920929,
726
+ "rewards/chosen": NaN,
727
+ "rewards/margins": NaN,
728
+ "rewards/rejected": NaN,
729
+ "step": 400
730
+ },
731
+ {
732
+ "epoch": 0.9090909090909091,
733
+ "grad_norm": NaN,
734
+ "learning_rate": 6.537573136654582e-06,
735
+ "log_odds_chosen": NaN,
736
+ "log_odds_ratio": NaN,
737
+ "logits/chosen": -2.5666518211364746,
738
+ "logits/rejected": -2.594228744506836,
739
+ "logps/chosen": NaN,
740
+ "logps/rejected": NaN,
741
+ "loss": 1.4251,
742
+ "nll_loss": 0.9093640446662903,
743
+ "rewards/accuracies": 0.574999988079071,
744
+ "rewards/chosen": NaN,
745
+ "rewards/margins": NaN,
746
+ "rewards/rejected": NaN,
747
+ "step": 410
748
+ },
749
+ {
750
+ "epoch": 0.9312638580931264,
751
+ "grad_norm": NaN,
752
+ "learning_rate": 6.462813621989207e-06,
753
+ "log_odds_chosen": NaN,
754
+ "log_odds_ratio": NaN,
755
+ "logits/chosen": -2.551781177520752,
756
+ "logits/rejected": -2.5560076236724854,
757
+ "logps/chosen": NaN,
758
+ "logps/rejected": NaN,
759
+ "loss": 1.3258,
760
+ "nll_loss": 0.9460923075675964,
761
+ "rewards/accuracies": 0.6000000238418579,
762
+ "rewards/chosen": NaN,
763
+ "rewards/margins": NaN,
764
+ "rewards/rejected": NaN,
765
+ "step": 420
766
+ },
767
+ {
768
+ "epoch": 0.9534368070953437,
769
+ "grad_norm": NaN,
770
+ "learning_rate": 6.386642080745528e-06,
771
+ "log_odds_chosen": NaN,
772
+ "log_odds_ratio": NaN,
773
+ "logits/chosen": -2.5597198009490967,
774
+ "logits/rejected": -2.5898067951202393,
775
+ "logps/chosen": NaN,
776
+ "logps/rejected": NaN,
777
+ "loss": 1.2546,
778
+ "nll_loss": 0.9564792513847351,
779
+ "rewards/accuracies": 0.574999988079071,
780
+ "rewards/chosen": NaN,
781
+ "rewards/margins": NaN,
782
+ "rewards/rejected": NaN,
783
+ "step": 430
784
+ },
785
+ {
786
+ "epoch": 0.975609756097561,
787
+ "grad_norm": 0.4311073124408722,
788
+ "learning_rate": 6.30910218502272e-06,
789
+ "log_odds_chosen": NaN,
790
+ "log_odds_ratio": NaN,
791
+ "logits/chosen": -2.6047396659851074,
792
+ "logits/rejected": -2.6136045455932617,
793
+ "logps/chosen": NaN,
794
+ "logps/rejected": NaN,
795
+ "loss": 1.3434,
796
+ "nll_loss": 0.96406489610672,
797
+ "rewards/accuracies": 0.625,
798
+ "rewards/chosen": NaN,
799
+ "rewards/margins": NaN,
800
+ "rewards/rejected": NaN,
801
+ "step": 440
802
+ },
803
+ {
804
+ "epoch": 0.9977827050997783,
805
+ "grad_norm": NaN,
806
+ "learning_rate": 6.230238391450653e-06,
807
+ "log_odds_chosen": NaN,
808
+ "log_odds_ratio": NaN,
809
+ "logits/chosen": -2.598021984100342,
810
+ "logits/rejected": -2.635017156600952,
811
+ "logps/chosen": NaN,
812
+ "logps/rejected": NaN,
813
+ "loss": 1.5232,
814
+ "nll_loss": 0.9541953802108765,
815
+ "rewards/accuracies": 0.4625000059604645,
816
+ "rewards/chosen": NaN,
817
+ "rewards/margins": NaN,
818
+ "rewards/rejected": NaN,
819
+ "step": 450
820
+ },
821
+ {
822
+ "epoch": 1.0199556541019956,
823
+ "grad_norm": NaN,
824
+ "learning_rate": 6.150095915701193e-06,
825
+ "log_odds_chosen": NaN,
826
+ "log_odds_ratio": NaN,
827
+ "logits/chosen": -2.572929859161377,
828
+ "logits/rejected": -2.6330859661102295,
829
+ "logps/chosen": NaN,
830
+ "logps/rejected": NaN,
831
+ "loss": 1.4393,
832
+ "nll_loss": 0.9072533845901489,
833
+ "rewards/accuracies": 0.612500011920929,
834
+ "rewards/chosen": NaN,
835
+ "rewards/margins": NaN,
836
+ "rewards/rejected": NaN,
837
+ "step": 460
838
+ },
839
+ {
840
+ "epoch": 1.042128603104213,
841
+ "grad_norm": NaN,
842
+ "learning_rate": 6.06872070656429e-06,
843
+ "log_odds_chosen": NaN,
844
+ "log_odds_ratio": NaN,
845
+ "logits/chosen": -2.659424066543579,
846
+ "logits/rejected": -2.665045976638794,
847
+ "logps/chosen": NaN,
848
+ "logps/rejected": NaN,
849
+ "loss": 1.2597,
850
+ "nll_loss": 0.9222477674484253,
851
+ "rewards/accuracies": 0.512499988079071,
852
+ "rewards/chosen": NaN,
853
+ "rewards/margins": NaN,
854
+ "rewards/rejected": NaN,
855
+ "step": 470
856
+ },
857
+ {
858
+ "epoch": 1.06430155210643,
859
+ "grad_norm": NaN,
860
+ "learning_rate": 5.986159419603766e-06,
861
+ "log_odds_chosen": NaN,
862
+ "log_odds_ratio": NaN,
863
+ "logits/chosen": -2.5539708137512207,
864
+ "logits/rejected": -2.578723430633545,
865
+ "logps/chosen": NaN,
866
+ "logps/rejected": NaN,
867
+ "loss": 1.5468,
868
+ "nll_loss": 0.9003454446792603,
869
+ "rewards/accuracies": 0.612500011920929,
870
+ "rewards/chosen": NaN,
871
+ "rewards/margins": NaN,
872
+ "rewards/rejected": NaN,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 1.0864745011086474,
877
+ "grad_norm": NaN,
878
+ "learning_rate": 5.902459390407861e-06,
879
+ "log_odds_chosen": NaN,
880
+ "log_odds_ratio": NaN,
881
+ "logits/chosen": -2.5614101886749268,
882
+ "logits/rejected": -2.61173677444458,
883
+ "logps/chosen": NaN,
884
+ "logps/rejected": NaN,
885
+ "loss": 1.4411,
886
+ "nll_loss": 0.9182124137878418,
887
+ "rewards/accuracies": 0.574999988079071,
888
+ "rewards/chosen": NaN,
889
+ "rewards/margins": NaN,
890
+ "rewards/rejected": NaN,
891
+ "step": 490
892
+ },
893
+ {
894
+ "epoch": 1.1086474501108647,
895
+ "grad_norm": 0.7572781443595886,
896
+ "learning_rate": 5.817668607449911e-06,
897
+ "log_odds_chosen": NaN,
898
+ "log_odds_ratio": NaN,
899
+ "logits/chosen": -2.621619939804077,
900
+ "logits/rejected": -2.688084363937378,
901
+ "logps/chosen": NaN,
902
+ "logps/rejected": NaN,
903
+ "loss": 1.2006,
904
+ "nll_loss": 0.9091912508010864,
905
+ "rewards/accuracies": 0.574999988079071,
906
+ "rewards/chosen": NaN,
907
+ "rewards/margins": NaN,
908
+ "rewards/rejected": NaN,
909
+ "step": 500
910
+ },
911
+ {
912
+ "epoch": 1.130820399113082,
913
+ "grad_norm": NaN,
914
+ "learning_rate": 5.731835684574692e-06,
915
+ "log_odds_chosen": NaN,
916
+ "log_odds_ratio": NaN,
917
+ "logits/chosen": -2.59326171875,
918
+ "logits/rejected": -2.6192498207092285,
919
+ "logps/chosen": NaN,
920
+ "logps/rejected": NaN,
921
+ "loss": 1.392,
922
+ "nll_loss": 0.8921745419502258,
923
+ "rewards/accuracies": 0.5375000238418579,
924
+ "rewards/chosen": NaN,
925
+ "rewards/margins": NaN,
926
+ "rewards/rejected": NaN,
927
+ "step": 510
928
+ },
929
+ {
930
+ "epoch": 1.1529933481152994,
931
+ "grad_norm": NaN,
932
+ "learning_rate": 5.645009833126218e-06,
933
+ "log_odds_chosen": NaN,
934
+ "log_odds_ratio": NaN,
935
+ "logits/chosen": -2.570634365081787,
936
+ "logits/rejected": -2.5929832458496094,
937
+ "logps/chosen": NaN,
938
+ "logps/rejected": NaN,
939
+ "loss": 1.5643,
940
+ "nll_loss": 0.9609503746032715,
941
+ "rewards/accuracies": 0.612500011920929,
942
+ "rewards/chosen": NaN,
943
+ "rewards/margins": NaN,
944
+ "rewards/rejected": NaN,
945
+ "step": 520
946
+ },
947
+ {
948
+ "epoch": 1.1751662971175167,
949
+ "grad_norm": NaN,
950
+ "learning_rate": 5.557240833732967e-06,
951
+ "log_odds_chosen": NaN,
952
+ "log_odds_ratio": NaN,
953
+ "logits/chosen": -2.5438590049743652,
954
+ "logits/rejected": -2.586803913116455,
955
+ "logps/chosen": NaN,
956
+ "logps/rejected": NaN,
957
+ "loss": 1.4816,
958
+ "nll_loss": 0.8677853345870972,
959
+ "rewards/accuracies": 0.5625,
960
+ "rewards/chosen": NaN,
961
+ "rewards/margins": NaN,
962
+ "rewards/rejected": NaN,
963
+ "step": 530
964
+ },
965
+ {
966
+ "epoch": 1.1973392461197339,
967
+ "grad_norm": NaN,
968
+ "learning_rate": 5.46857900776672e-06,
969
+ "log_odds_chosen": NaN,
970
+ "log_odds_ratio": NaN,
971
+ "logits/chosen": -2.5750033855438232,
972
+ "logits/rejected": -2.618818521499634,
973
+ "logps/chosen": NaN,
974
+ "logps/rejected": NaN,
975
+ "loss": 1.3517,
976
+ "nll_loss": 0.8420497179031372,
977
+ "rewards/accuracies": 0.5625,
978
+ "rewards/chosen": NaN,
979
+ "rewards/margins": NaN,
980
+ "rewards/rejected": NaN,
981
+ "step": 540
982
+ },
983
+ {
984
+ "epoch": 1.2195121951219512,
985
+ "grad_norm": NaN,
986
+ "learning_rate": 5.3790751884913605e-06,
987
+ "log_odds_chosen": NaN,
988
+ "log_odds_ratio": NaN,
989
+ "logits/chosen": -2.576446771621704,
990
+ "logits/rejected": -2.5843629837036133,
991
+ "logps/chosen": NaN,
992
+ "logps/rejected": NaN,
993
+ "loss": 1.5026,
994
+ "nll_loss": 0.8621179461479187,
995
+ "rewards/accuracies": 0.5625,
996
+ "rewards/chosen": NaN,
997
+ "rewards/margins": NaN,
998
+ "rewards/rejected": NaN,
999
+ "step": 550
1000
+ },
1001
+ {
1002
+ "epoch": 1.2416851441241685,
1003
+ "grad_norm": NaN,
1004
+ "learning_rate": 5.288780691918196e-06,
1005
+ "log_odds_chosen": NaN,
1006
+ "log_odds_ratio": NaN,
1007
+ "logits/chosen": -2.569793939590454,
1008
+ "logits/rejected": -2.656283140182495,
1009
+ "logps/chosen": NaN,
1010
+ "logps/rejected": NaN,
1011
+ "loss": 1.3906,
1012
+ "nll_loss": 1.0533077716827393,
1013
+ "rewards/accuracies": 0.675000011920929,
1014
+ "rewards/chosen": NaN,
1015
+ "rewards/margins": NaN,
1016
+ "rewards/rejected": NaN,
1017
+ "step": 560
1018
+ },
1019
+ {
1020
+ "epoch": 1.2638580931263859,
1021
+ "grad_norm": NaN,
1022
+ "learning_rate": 5.197747287384502e-06,
1023
+ "log_odds_chosen": NaN,
1024
+ "log_odds_ratio": NaN,
1025
+ "logits/chosen": -2.586745500564575,
1026
+ "logits/rejected": -2.6093835830688477,
1027
+ "logps/chosen": NaN,
1028
+ "logps/rejected": NaN,
1029
+ "loss": 1.5754,
1030
+ "nll_loss": 0.9478577375411987,
1031
+ "rewards/accuracies": 0.5,
1032
+ "rewards/chosen": NaN,
1033
+ "rewards/margins": NaN,
1034
+ "rewards/rejected": NaN,
1035
+ "step": 570
1036
+ },
1037
+ {
1038
+ "epoch": 1.2860310421286032,
1039
+ "grad_norm": NaN,
1040
+ "learning_rate": 5.106027167872141e-06,
1041
+ "log_odds_chosen": NaN,
1042
+ "log_odds_ratio": NaN,
1043
+ "logits/chosen": -2.5553150177001953,
1044
+ "logits/rejected": -2.610725164413452,
1045
+ "logps/chosen": NaN,
1046
+ "logps/rejected": NaN,
1047
+ "loss": 1.4337,
1048
+ "nll_loss": 0.8642798662185669,
1049
+ "rewards/accuracies": 0.5874999761581421,
1050
+ "rewards/chosen": NaN,
1051
+ "rewards/margins": NaN,
1052
+ "rewards/rejected": NaN,
1053
+ "step": 580
1054
+ },
1055
+ {
1056
+ "epoch": 1.3082039911308203,
1057
+ "grad_norm": NaN,
1058
+ "learning_rate": 5.013672920083319e-06,
1059
+ "log_odds_chosen": NaN,
1060
+ "log_odds_ratio": NaN,
1061
+ "logits/chosen": -2.579271078109741,
1062
+ "logits/rejected": -2.635814666748047,
1063
+ "logps/chosen": NaN,
1064
+ "logps/rejected": NaN,
1065
+ "loss": 1.2762,
1066
+ "nll_loss": 0.9140083193778992,
1067
+ "rewards/accuracies": 0.550000011920929,
1068
+ "rewards/chosen": NaN,
1069
+ "rewards/margins": NaN,
1070
+ "rewards/rejected": NaN,
1071
+ "step": 590
1072
+ },
1073
+ {
1074
+ "epoch": 1.3303769401330376,
1075
+ "grad_norm": NaN,
1076
+ "learning_rate": 4.920737494290572e-06,
1077
+ "log_odds_chosen": NaN,
1078
+ "log_odds_ratio": NaN,
1079
+ "logits/chosen": -2.5220165252685547,
1080
+ "logits/rejected": -2.551558256149292,
1081
+ "logps/chosen": NaN,
1082
+ "logps/rejected": NaN,
1083
+ "loss": 1.6071,
1084
+ "nll_loss": 0.9066599011421204,
1085
+ "rewards/accuracies": 0.512499988079071,
1086
+ "rewards/chosen": NaN,
1087
+ "rewards/margins": NaN,
1088
+ "rewards/rejected": NaN,
1089
+ "step": 600
1090
+ },
1091
+ {
1092
+ "epoch": 1.352549889135255,
1093
+ "grad_norm": NaN,
1094
+ "learning_rate": 4.827274173978333e-06,
1095
+ "log_odds_chosen": NaN,
1096
+ "log_odds_ratio": NaN,
1097
+ "logits/chosen": -2.560403347015381,
1098
+ "logits/rejected": -2.639423131942749,
1099
+ "logps/chosen": NaN,
1100
+ "logps/rejected": NaN,
1101
+ "loss": 1.2709,
1102
+ "nll_loss": 0.8913120031356812,
1103
+ "rewards/accuracies": 0.7250000238418579,
1104
+ "rewards/chosen": NaN,
1105
+ "rewards/margins": NaN,
1106
+ "rewards/rejected": NaN,
1107
+ "step": 610
1108
+ },
1109
+ {
1110
+ "epoch": 1.3747228381374723,
1111
+ "grad_norm": NaN,
1112
+ "learning_rate": 4.733336545293438e-06,
1113
+ "log_odds_chosen": NaN,
1114
+ "log_odds_ratio": NaN,
1115
+ "logits/chosen": -2.616939067840576,
1116
+ "logits/rejected": -2.650655746459961,
1117
+ "logps/chosen": NaN,
1118
+ "logps/rejected": NaN,
1119
+ "loss": 1.4557,
1120
+ "nll_loss": 0.9315293431282043,
1121
+ "rewards/accuracies": 0.550000011920929,
1122
+ "rewards/chosen": NaN,
1123
+ "rewards/margins": NaN,
1124
+ "rewards/rejected": NaN,
1125
+ "step": 620
1126
+ },
1127
+ {
1128
+ "epoch": 1.3968957871396896,
1129
+ "grad_norm": 0.6212561130523682,
1130
+ "learning_rate": 4.638978466322108e-06,
1131
+ "log_odds_chosen": NaN,
1132
+ "log_odds_ratio": NaN,
1133
+ "logits/chosen": -2.531559944152832,
1134
+ "logits/rejected": -2.5307424068450928,
1135
+ "logps/chosen": NaN,
1136
+ "logps/rejected": NaN,
1137
+ "loss": 0.9584,
1138
+ "nll_loss": 0.9440839886665344,
1139
+ "rewards/accuracies": 0.5249999761581421,
1140
+ "rewards/chosen": NaN,
1141
+ "rewards/margins": NaN,
1142
+ "rewards/rejected": NaN,
1143
+ "step": 630
1144
+ },
1145
+ {
1146
+ "epoch": 1.4190687361419068,
1147
+ "grad_norm": NaN,
1148
+ "learning_rate": 4.5442540362110285e-06,
1149
+ "log_odds_chosen": NaN,
1150
+ "log_odds_ratio": NaN,
1151
+ "logits/chosen": -2.546278476715088,
1152
+ "logits/rejected": -2.5663809776306152,
1153
+ "logps/chosen": NaN,
1154
+ "logps/rejected": NaN,
1155
+ "loss": 1.4305,
1156
+ "nll_loss": 0.8402501940727234,
1157
+ "rewards/accuracies": 0.574999988079071,
1158
+ "rewards/chosen": NaN,
1159
+ "rewards/margins": NaN,
1160
+ "rewards/rejected": NaN,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 1.441241685144124,
1165
+ "grad_norm": 0.784209132194519,
1166
+ "learning_rate": 4.449217564150197e-06,
1167
+ "log_odds_chosen": NaN,
1168
+ "log_odds_ratio": NaN,
1169
+ "logits/chosen": -2.547091484069824,
1170
+ "logits/rejected": -2.6290016174316406,
1171
+ "logps/chosen": NaN,
1172
+ "logps/rejected": NaN,
1173
+ "loss": 1.1191,
1174
+ "nll_loss": 0.9092384576797485,
1175
+ "rewards/accuracies": 0.612500011920929,
1176
+ "rewards/chosen": NaN,
1177
+ "rewards/margins": NaN,
1178
+ "rewards/rejected": NaN,
1179
+ "step": 650
1180
+ },
1181
+ {
1182
+ "epoch": 1.4634146341463414,
1183
+ "grad_norm": NaN,
1184
+ "learning_rate": 4.353923538235369e-06,
1185
+ "log_odds_chosen": NaN,
1186
+ "log_odds_ratio": NaN,
1187
+ "logits/chosen": -2.60884952545166,
1188
+ "logits/rejected": -2.640436887741089,
1189
+ "logps/chosen": NaN,
1190
+ "logps/rejected": NaN,
1191
+ "loss": 1.2808,
1192
+ "nll_loss": 0.872983455657959,
1193
+ "rewards/accuracies": 0.6625000238418579,
1194
+ "rewards/chosen": NaN,
1195
+ "rewards/margins": NaN,
1196
+ "rewards/rejected": NaN,
1197
+ "step": 660
1198
+ },
1199
+ {
1200
+ "epoch": 1.4855875831485588,
1201
+ "grad_norm": NaN,
1202
+ "learning_rate": 4.2584265942279114e-06,
1203
+ "log_odds_chosen": NaN,
1204
+ "log_odds_ratio": NaN,
1205
+ "logits/chosen": -2.5404248237609863,
1206
+ "logits/rejected": -2.5652973651885986,
1207
+ "logps/chosen": NaN,
1208
+ "logps/rejected": NaN,
1209
+ "loss": 1.5307,
1210
+ "nll_loss": 0.8896579742431641,
1211
+ "rewards/accuracies": 0.5874999761581421,
1212
+ "rewards/chosen": NaN,
1213
+ "rewards/margins": NaN,
1214
+ "rewards/rejected": NaN,
1215
+ "step": 670
1216
+ },
1217
+ {
1218
+ "epoch": 1.507760532150776,
1219
+ "grad_norm": NaN,
1220
+ "learning_rate": 4.162781484230005e-06,
1221
+ "log_odds_chosen": NaN,
1222
+ "log_odds_ratio": NaN,
1223
+ "logits/chosen": -2.554001569747925,
1224
+ "logits/rejected": -2.5924289226531982,
1225
+ "logps/chosen": NaN,
1226
+ "logps/rejected": NaN,
1227
+ "loss": 1.5124,
1228
+ "nll_loss": 0.9706124067306519,
1229
+ "rewards/accuracies": 0.5874999761581421,
1230
+ "rewards/chosen": NaN,
1231
+ "rewards/margins": NaN,
1232
+ "rewards/rejected": NaN,
1233
+ "step": 680
1234
+ },
1235
+ {
1236
+ "epoch": 1.5299334811529932,
1237
+ "grad_norm": NaN,
1238
+ "learning_rate": 4.067043045293142e-06,
1239
+ "log_odds_chosen": NaN,
1240
+ "log_odds_ratio": NaN,
1241
+ "logits/chosen": -2.6452507972717285,
1242
+ "logits/rejected": -2.6547276973724365,
1243
+ "logps/chosen": NaN,
1244
+ "logps/rejected": NaN,
1245
+ "loss": 1.3232,
1246
+ "nll_loss": 0.9081094861030579,
1247
+ "rewards/accuracies": 0.5625,
1248
+ "rewards/chosen": NaN,
1249
+ "rewards/margins": NaN,
1250
+ "rewards/rejected": NaN,
1251
+ "step": 690
1252
+ },
1253
+ {
1254
+ "epoch": 1.5521064301552108,
1255
+ "grad_norm": NaN,
1256
+ "learning_rate": 3.971266167977914e-06,
1257
+ "log_odds_chosen": NaN,
1258
+ "log_odds_ratio": NaN,
1259
+ "logits/chosen": -2.5739452838897705,
1260
+ "logits/rejected": -2.6191649436950684,
1261
+ "logps/chosen": NaN,
1262
+ "logps/rejected": NaN,
1263
+ "loss": 1.1834,
1264
+ "nll_loss": 0.8611727952957153,
1265
+ "rewards/accuracies": 0.612500011920929,
1266
+ "rewards/chosen": NaN,
1267
+ "rewards/margins": NaN,
1268
+ "rewards/rejected": NaN,
1269
+ "step": 700
1270
+ },
1271
+ {
1272
+ "epoch": 1.5742793791574279,
1273
+ "grad_norm": 0.7607054710388184,
1274
+ "learning_rate": 3.875505764883128e-06,
1275
+ "log_odds_chosen": NaN,
1276
+ "log_odds_ratio": NaN,
1277
+ "logits/chosen": -2.5171356201171875,
1278
+ "logits/rejected": -2.5558667182922363,
1279
+ "logps/chosen": NaN,
1280
+ "logps/rejected": NaN,
1281
+ "loss": 1.3944,
1282
+ "nll_loss": 0.9226005673408508,
1283
+ "rewards/accuracies": 0.5874999761581421,
1284
+ "rewards/chosen": NaN,
1285
+ "rewards/margins": NaN,
1286
+ "rewards/rejected": NaN,
1287
+ "step": 710
1288
+ },
1289
+ {
1290
+ "epoch": 1.5964523281596452,
1291
+ "grad_norm": NaN,
1292
+ "learning_rate": 3.7798167391622746e-06,
1293
+ "log_odds_chosen": NaN,
1294
+ "log_odds_ratio": NaN,
1295
+ "logits/chosen": -2.4788334369659424,
1296
+ "logits/rejected": -2.556370735168457,
1297
+ "logps/chosen": NaN,
1298
+ "logps/rejected": NaN,
1299
+ "loss": 1.2499,
1300
+ "nll_loss": 0.8890296816825867,
1301
+ "rewards/accuracies": 0.5874999761581421,
1302
+ "rewards/chosen": NaN,
1303
+ "rewards/margins": NaN,
1304
+ "rewards/rejected": NaN,
1305
+ "step": 720
1306
+ },
1307
+ {
1308
+ "epoch": 1.6186252771618626,
1309
+ "grad_norm": 0.5698145031929016,
1310
+ "learning_rate": 3.684253953045438e-06,
1311
+ "log_odds_chosen": NaN,
1312
+ "log_odds_ratio": NaN,
1313
+ "logits/chosen": -2.59308123588562,
1314
+ "logits/rejected": -2.5706467628479004,
1315
+ "logps/chosen": NaN,
1316
+ "logps/rejected": NaN,
1317
+ "loss": 1.3174,
1318
+ "nll_loss": 0.8769053220748901,
1319
+ "rewards/accuracies": 0.625,
1320
+ "rewards/chosen": NaN,
1321
+ "rewards/margins": NaN,
1322
+ "rewards/rejected": NaN,
1323
+ "step": 730
1324
+ },
1325
+ {
1326
+ "epoch": 1.6407982261640797,
1327
+ "grad_norm": NaN,
1328
+ "learning_rate": 3.588872196384632e-06,
1329
+ "log_odds_chosen": NaN,
1330
+ "log_odds_ratio": NaN,
1331
+ "logits/chosen": -2.515533924102783,
1332
+ "logits/rejected": -2.539431571960449,
1333
+ "logps/chosen": NaN,
1334
+ "logps/rejected": NaN,
1335
+ "loss": 1.4826,
1336
+ "nll_loss": 0.9430069923400879,
1337
+ "rewards/accuracies": 0.5625,
1338
+ "rewards/chosen": NaN,
1339
+ "rewards/margins": NaN,
1340
+ "rewards/rejected": NaN,
1341
+ "step": 740
1342
+ },
1343
+ {
1344
+ "epoch": 1.6629711751662972,
1345
+ "grad_norm": 1.2568813562393188,
1346
+ "learning_rate": 3.493726155240664e-06,
1347
+ "log_odds_chosen": NaN,
1348
+ "log_odds_ratio": NaN,
1349
+ "logits/chosen": -2.6210389137268066,
1350
+ "logits/rejected": -2.6431758403778076,
1351
+ "logps/chosen": NaN,
1352
+ "logps/rejected": NaN,
1353
+ "loss": 1.2068,
1354
+ "nll_loss": 0.9099509119987488,
1355
+ "rewards/accuracies": 0.5625,
1356
+ "rewards/chosen": NaN,
1357
+ "rewards/margins": NaN,
1358
+ "rewards/rejected": NaN,
1359
+ "step": 750
1360
+ },
1361
+ {
1362
+ "epoch": 1.6851441241685143,
1363
+ "grad_norm": NaN,
1364
+ "learning_rate": 3.3988703805294946e-06,
1365
+ "log_odds_chosen": NaN,
1366
+ "log_odds_ratio": NaN,
1367
+ "logits/chosen": -2.572796106338501,
1368
+ "logits/rejected": -2.6425790786743164,
1369
+ "logps/chosen": NaN,
1370
+ "logps/rejected": NaN,
1371
+ "loss": 1.3102,
1372
+ "nll_loss": 0.9549806714057922,
1373
+ "rewards/accuracies": 0.6625000238418579,
1374
+ "rewards/chosen": NaN,
1375
+ "rewards/margins": NaN,
1376
+ "rewards/rejected": NaN,
1377
+ "step": 760
1378
+ },
1379
+ {
1380
+ "epoch": 1.7073170731707317,
1381
+ "grad_norm": 0.7996054887771606,
1382
+ "learning_rate": 3.3043592567460748e-06,
1383
+ "log_odds_chosen": NaN,
1384
+ "log_odds_ratio": NaN,
1385
+ "logits/chosen": -2.5201961994171143,
1386
+ "logits/rejected": -2.552128553390503,
1387
+ "logps/chosen": NaN,
1388
+ "logps/rejected": NaN,
1389
+ "loss": 1.5766,
1390
+ "nll_loss": 0.9187144041061401,
1391
+ "rewards/accuracies": 0.625,
1392
+ "rewards/chosen": NaN,
1393
+ "rewards/margins": NaN,
1394
+ "rewards/rejected": NaN,
1395
+ "step": 770
1396
+ },
1397
+ {
1398
+ "epoch": 1.729490022172949,
1399
+ "grad_norm": NaN,
1400
+ "learning_rate": 3.2102469707836174e-06,
1401
+ "log_odds_chosen": NaN,
1402
+ "log_odds_ratio": NaN,
1403
+ "logits/chosen": -2.5832736492156982,
1404
+ "logits/rejected": -2.6100733280181885,
1405
+ "logps/chosen": NaN,
1406
+ "logps/rejected": NaN,
1407
+ "loss": 1.1691,
1408
+ "nll_loss": 0.8904333114624023,
1409
+ "rewards/accuracies": 0.5625,
1410
+ "rewards/chosen": NaN,
1411
+ "rewards/margins": NaN,
1412
+ "rewards/rejected": NaN,
1413
+ "step": 780
1414
+ },
1415
+ {
1416
+ "epoch": 1.7516629711751663,
1417
+ "grad_norm": NaN,
1418
+ "learning_rate": 3.1165874808661342e-06,
1419
+ "log_odds_chosen": NaN,
1420
+ "log_odds_ratio": NaN,
1421
+ "logits/chosen": -2.599666118621826,
1422
+ "logits/rejected": -2.62807297706604,
1423
+ "logps/chosen": NaN,
1424
+ "logps/rejected": NaN,
1425
+ "loss": 1.4813,
1426
+ "nll_loss": 0.8979522585868835,
1427
+ "rewards/accuracies": 0.5249999761581421,
1428
+ "rewards/chosen": NaN,
1429
+ "rewards/margins": NaN,
1430
+ "rewards/rejected": NaN,
1431
+ "step": 790
1432
+ },
1433
+ {
1434
+ "epoch": 1.7738359201773837,
1435
+ "grad_norm": NaN,
1436
+ "learning_rate": 3.0234344856121086e-06,
1437
+ "log_odds_chosen": NaN,
1438
+ "log_odds_ratio": NaN,
1439
+ "logits/chosen": -2.6034371852874756,
1440
+ "logits/rejected": -2.6399123668670654,
1441
+ "logps/chosen": NaN,
1442
+ "logps/rejected": NaN,
1443
+ "loss": 1.2004,
1444
+ "nll_loss": 0.9016131162643433,
1445
+ "rewards/accuracies": 0.675000011920929,
1446
+ "rewards/chosen": NaN,
1447
+ "rewards/margins": NaN,
1448
+ "rewards/rejected": NaN,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 1.7960088691796008,
1453
+ "grad_norm": NaN,
1454
+ "learning_rate": 2.9308413932469805e-06,
1455
+ "log_odds_chosen": NaN,
1456
+ "log_odds_ratio": NaN,
1457
+ "logits/chosen": -2.5875086784362793,
1458
+ "logits/rejected": -2.5995872020721436,
1459
+ "logps/chosen": NaN,
1460
+ "logps/rejected": NaN,
1461
+ "loss": 1.2187,
1462
+ "nll_loss": 0.895309567451477,
1463
+ "rewards/accuracies": 0.675000011920929,
1464
+ "rewards/chosen": NaN,
1465
+ "rewards/margins": NaN,
1466
+ "rewards/rejected": NaN,
1467
+ "step": 810
1468
+ },
1469
+ {
1470
+ "epoch": 1.8181818181818183,
1471
+ "grad_norm": NaN,
1472
+ "learning_rate": 2.8388612909821512e-06,
1473
+ "log_odds_chosen": NaN,
1474
+ "log_odds_ratio": NaN,
1475
+ "logits/chosen": -2.545532703399658,
1476
+ "logits/rejected": -2.5655813217163086,
1477
+ "logps/chosen": NaN,
1478
+ "logps/rejected": NaN,
1479
+ "loss": 1.4789,
1480
+ "nll_loss": 0.8789796829223633,
1481
+ "rewards/accuracies": 0.5874999761581421,
1482
+ "rewards/chosen": NaN,
1483
+ "rewards/margins": NaN,
1484
+ "rewards/rejected": NaN,
1485
+ "step": 820
1486
+ },
1487
+ {
1488
+ "epoch": 1.8403547671840355,
1489
+ "grad_norm": NaN,
1490
+ "learning_rate": 2.7475469145780162e-06,
1491
+ "log_odds_chosen": NaN,
1492
+ "log_odds_ratio": NaN,
1493
+ "logits/chosen": -2.634237766265869,
1494
+ "logits/rejected": -2.6819849014282227,
1495
+ "logps/chosen": NaN,
1496
+ "logps/rejected": NaN,
1497
+ "loss": 2.0414,
1498
+ "nll_loss": 0.8710411190986633,
1499
+ "rewards/accuracies": 0.5249999761581421,
1500
+ "rewards/chosen": NaN,
1501
+ "rewards/margins": NaN,
1502
+ "rewards/rejected": NaN,
1503
+ "step": 830
1504
+ },
1505
+ {
1506
+ "epoch": 1.8625277161862528,
1507
+ "grad_norm": NaN,
1508
+ "learning_rate": 2.6569506181085155e-06,
1509
+ "log_odds_chosen": NaN,
1510
+ "log_odds_ratio": NaN,
1511
+ "logits/chosen": -2.569899559020996,
1512
+ "logits/rejected": -2.627354145050049,
1513
+ "logps/chosen": NaN,
1514
+ "logps/rejected": NaN,
1515
+ "loss": 1.1485,
1516
+ "nll_loss": 0.8969793319702148,
1517
+ "rewards/accuracies": 0.574999988079071,
1518
+ "rewards/chosen": NaN,
1519
+ "rewards/margins": NaN,
1520
+ "rewards/rejected": NaN,
1521
+ "step": 840
1522
+ },
1523
+ {
1524
+ "epoch": 1.8847006651884701,
1525
+ "grad_norm": NaN,
1526
+ "learning_rate": 2.5671243439445098e-06,
1527
+ "log_odds_chosen": NaN,
1528
+ "log_odds_ratio": NaN,
1529
+ "logits/chosen": -2.5224175453186035,
1530
+ "logits/rejected": -2.521833896636963,
1531
+ "logps/chosen": NaN,
1532
+ "logps/rejected": NaN,
1533
+ "loss": 1.5147,
1534
+ "nll_loss": 1.0038148164749146,
1535
+ "rewards/accuracies": 0.574999988079071,
1536
+ "rewards/chosen": NaN,
1537
+ "rewards/margins": NaN,
1538
+ "rewards/rejected": NaN,
1539
+ "step": 850
1540
+ },
1541
+ {
1542
+ "epoch": 1.9068736141906872,
1543
+ "grad_norm": NaN,
1544
+ "learning_rate": 2.4781195929731997e-06,
1545
+ "log_odds_chosen": NaN,
1546
+ "log_odds_ratio": NaN,
1547
+ "logits/chosen": -2.5353684425354004,
1548
+ "logits/rejected": -2.554072141647339,
1549
+ "logps/chosen": NaN,
1550
+ "logps/rejected": NaN,
1551
+ "loss": 1.2603,
1552
+ "nll_loss": 0.8757489323616028,
1553
+ "rewards/accuracies": 0.5249999761581421,
1554
+ "rewards/chosen": NaN,
1555
+ "rewards/margins": NaN,
1556
+ "rewards/rejected": NaN,
1557
+ "step": 860
1558
+ },
1559
+ {
1560
+ "epoch": 1.9290465631929048,
1561
+ "grad_norm": NaN,
1562
+ "learning_rate": 2.3899873950706803e-06,
1563
+ "log_odds_chosen": NaN,
1564
+ "log_odds_ratio": NaN,
1565
+ "logits/chosen": -2.6149215698242188,
1566
+ "logits/rejected": -2.663322687149048,
1567
+ "logps/chosen": NaN,
1568
+ "logps/rejected": NaN,
1569
+ "loss": 1.3348,
1570
+ "nll_loss": 0.8890805244445801,
1571
+ "rewards/accuracies": 0.5874999761581421,
1572
+ "rewards/chosen": NaN,
1573
+ "rewards/margins": NaN,
1574
+ "rewards/rejected": NaN,
1575
+ "step": 870
1576
+ },
1577
+ {
1578
+ "epoch": 1.951219512195122,
1579
+ "grad_norm": NaN,
1580
+ "learning_rate": 2.3027782798445205e-06,
1581
+ "log_odds_chosen": NaN,
1582
+ "log_odds_ratio": NaN,
1583
+ "logits/chosen": -2.5764241218566895,
1584
+ "logits/rejected": -2.5978610515594482,
1585
+ "logps/chosen": NaN,
1586
+ "logps/rejected": NaN,
1587
+ "loss": 1.255,
1588
+ "nll_loss": 0.9303677678108215,
1589
+ "rewards/accuracies": 0.5375000238418579,
1590
+ "rewards/chosen": NaN,
1591
+ "rewards/margins": NaN,
1592
+ "rewards/rejected": NaN,
1593
+ "step": 880
1594
+ },
1595
+ {
1596
+ "epoch": 1.9733924611973392,
1597
+ "grad_norm": NaN,
1598
+ "learning_rate": 2.216542247663192e-06,
1599
+ "log_odds_chosen": NaN,
1600
+ "log_odds_ratio": NaN,
1601
+ "logits/chosen": -2.5386908054351807,
1602
+ "logits/rejected": -2.5890002250671387,
1603
+ "logps/chosen": NaN,
1604
+ "logps/rejected": NaN,
1605
+ "loss": 1.228,
1606
+ "nll_loss": 0.880374550819397,
1607
+ "rewards/accuracies": 0.7250000238418579,
1608
+ "rewards/chosen": NaN,
1609
+ "rewards/margins": NaN,
1610
+ "rewards/rejected": NaN,
1611
+ "step": 890
1612
+ },
1613
+ {
1614
+ "epoch": 1.9955654101995566,
1615
+ "grad_norm": NaN,
1616
+ "learning_rate": 2.1313287409889075e-06,
1617
+ "log_odds_chosen": NaN,
1618
+ "log_odds_ratio": NaN,
1619
+ "logits/chosen": -2.6515865325927734,
1620
+ "logits/rejected": -2.698002338409424,
1621
+ "logps/chosen": NaN,
1622
+ "logps/rejected": NaN,
1623
+ "loss": 1.4501,
1624
+ "nll_loss": 0.8617309331893921,
1625
+ "rewards/accuracies": 0.675000011920929,
1626
+ "rewards/chosen": NaN,
1627
+ "rewards/margins": NaN,
1628
+ "rewards/rejected": NaN,
1629
+ "step": 900
1630
+ },
1631
+ {
1632
+ "epoch": 2.0177383592017737,
1633
+ "grad_norm": NaN,
1634
+ "learning_rate": 2.0471866160303494e-06,
1635
+ "log_odds_chosen": NaN,
1636
+ "log_odds_ratio": NaN,
1637
+ "logits/chosen": -2.576596975326538,
1638
+ "logits/rejected": -2.634167194366455,
1639
+ "logps/chosen": NaN,
1640
+ "logps/rejected": NaN,
1641
+ "loss": 1.658,
1642
+ "nll_loss": 0.9685592651367188,
1643
+ "rewards/accuracies": 0.6000000238418579,
1644
+ "rewards/chosen": NaN,
1645
+ "rewards/margins": NaN,
1646
+ "rewards/rejected": NaN,
1647
+ "step": 910
1648
+ },
1649
+ {
1650
+ "epoch": 2.0399113082039912,
1651
+ "grad_norm": NaN,
1652
+ "learning_rate": 1.9641641147314996e-06,
1653
+ "log_odds_chosen": NaN,
1654
+ "log_odds_ratio": NaN,
1655
+ "logits/chosen": -2.556303024291992,
1656
+ "logits/rejected": -2.6210145950317383,
1657
+ "logps/chosen": NaN,
1658
+ "logps/rejected": NaN,
1659
+ "loss": 1.6006,
1660
+ "nll_loss": 0.9573662877082825,
1661
+ "rewards/accuracies": 0.637499988079071,
1662
+ "rewards/chosen": NaN,
1663
+ "rewards/margins": NaN,
1664
+ "rewards/rejected": NaN,
1665
+ "step": 920
1666
+ },
1667
+ {
1668
+ "epoch": 2.0620842572062084,
1669
+ "grad_norm": NaN,
1670
+ "learning_rate": 1.88230883711267e-06,
1671
+ "log_odds_chosen": NaN,
1672
+ "log_odds_ratio": NaN,
1673
+ "logits/chosen": -2.6028056144714355,
1674
+ "logits/rejected": -2.648607015609741,
1675
+ "logps/chosen": NaN,
1676
+ "logps/rejected": NaN,
1677
+ "loss": 1.3477,
1678
+ "nll_loss": 0.8656437993049622,
1679
+ "rewards/accuracies": 0.612500011920929,
1680
+ "rewards/chosen": NaN,
1681
+ "rewards/margins": NaN,
1682
+ "rewards/rejected": NaN,
1683
+ "step": 930
1684
+ },
1685
+ {
1686
+ "epoch": 2.084257206208426,
1687
+ "grad_norm": NaN,
1688
+ "learning_rate": 1.8016677139795635e-06,
1689
+ "log_odds_chosen": NaN,
1690
+ "log_odds_ratio": NaN,
1691
+ "logits/chosen": -2.5672965049743652,
1692
+ "logits/rejected": -2.5980045795440674,
1693
+ "logps/chosen": NaN,
1694
+ "logps/rejected": NaN,
1695
+ "loss": 1.404,
1696
+ "nll_loss": 0.8821004033088684,
1697
+ "rewards/accuracies": 0.612500011920929,
1698
+ "rewards/chosen": NaN,
1699
+ "rewards/margins": NaN,
1700
+ "rewards/rejected": NaN,
1701
+ "step": 940
1702
+ },
1703
+ {
1704
+ "epoch": 2.106430155210643,
1705
+ "grad_norm": NaN,
1706
+ "learning_rate": 1.7222869800160197e-06,
1707
+ "log_odds_chosen": NaN,
1708
+ "log_odds_ratio": NaN,
1709
+ "logits/chosen": -2.567884683609009,
1710
+ "logits/rejected": -2.6413073539733887,
1711
+ "logps/chosen": NaN,
1712
+ "logps/rejected": NaN,
1713
+ "loss": 1.5904,
1714
+ "nll_loss": 0.8698426485061646,
1715
+ "rewards/accuracies": 0.6499999761581421,
1716
+ "rewards/chosen": NaN,
1717
+ "rewards/margins": NaN,
1718
+ "rewards/rejected": NaN,
1719
+ "step": 950
1720
+ },
1721
+ {
1722
+ "epoch": 2.12860310421286,
1723
+ "grad_norm": NaN,
1724
+ "learning_rate": 1.6442121472758776e-06,
1725
+ "log_odds_chosen": NaN,
1726
+ "log_odds_ratio": NaN,
1727
+ "logits/chosen": -2.5741963386535645,
1728
+ "logits/rejected": -2.6005654335021973,
1729
+ "logps/chosen": NaN,
1730
+ "logps/rejected": NaN,
1731
+ "loss": 1.7035,
1732
+ "nll_loss": 0.8915897607803345,
1733
+ "rewards/accuracies": 0.612500011920929,
1734
+ "rewards/chosen": NaN,
1735
+ "rewards/margins": NaN,
1736
+ "rewards/rejected": NaN,
1737
+ "step": 960
1738
+ },
1739
+ {
1740
+ "epoch": 2.1507760532150777,
1741
+ "grad_norm": NaN,
1742
+ "learning_rate": 1.5674879790891504e-06,
1743
+ "log_odds_chosen": NaN,
1744
+ "log_odds_ratio": NaN,
1745
+ "logits/chosen": -2.5121145248413086,
1746
+ "logits/rejected": -2.5986428260803223,
1747
+ "logps/chosen": NaN,
1748
+ "logps/rejected": NaN,
1749
+ "loss": 1.429,
1750
+ "nll_loss": 0.8993185758590698,
1751
+ "rewards/accuracies": 0.550000011920929,
1752
+ "rewards/chosen": NaN,
1753
+ "rewards/margins": NaN,
1754
+ "rewards/rejected": NaN,
1755
+ "step": 970
1756
+ },
1757
+ {
1758
+ "epoch": 2.172949002217295,
1759
+ "grad_norm": NaN,
1760
+ "learning_rate": 1.4921584643974772e-06,
1761
+ "log_odds_chosen": NaN,
1762
+ "log_odds_ratio": NaN,
1763
+ "logits/chosen": -2.5978806018829346,
1764
+ "logits/rejected": -2.6225571632385254,
1765
+ "logps/chosen": NaN,
1766
+ "logps/rejected": NaN,
1767
+ "loss": 1.6976,
1768
+ "nll_loss": 0.8835185766220093,
1769
+ "rewards/accuracies": 0.5249999761581421,
1770
+ "rewards/chosen": NaN,
1771
+ "rewards/margins": NaN,
1772
+ "rewards/rejected": NaN,
1773
+ "step": 980
1774
+ },
1775
+ {
1776
+ "epoch": 2.1951219512195124,
1777
+ "grad_norm": NaN,
1778
+ "learning_rate": 1.4182667925335472e-06,
1779
+ "log_odds_chosen": NaN,
1780
+ "log_odds_ratio": NaN,
1781
+ "logits/chosen": -2.5312979221343994,
1782
+ "logits/rejected": -2.619032382965088,
1783
+ "logps/chosen": NaN,
1784
+ "logps/rejected": NaN,
1785
+ "loss": 1.2105,
1786
+ "nll_loss": 0.8996240496635437,
1787
+ "rewards/accuracies": 0.6875,
1788
+ "rewards/chosen": NaN,
1789
+ "rewards/margins": NaN,
1790
+ "rewards/rejected": NaN,
1791
+ "step": 990
1792
+ },
1793
+ {
1794
+ "epoch": 2.2172949002217295,
1795
+ "grad_norm": NaN,
1796
+ "learning_rate": 1.3458553284589852e-06,
1797
+ "log_odds_chosen": NaN,
1798
+ "log_odds_ratio": NaN,
1799
+ "logits/chosen": -2.586155414581299,
1800
+ "logits/rejected": -2.641432523727417,
1801
+ "logps/chosen": NaN,
1802
+ "logps/rejected": NaN,
1803
+ "loss": 1.4627,
1804
+ "nll_loss": 0.8832103610038757,
1805
+ "rewards/accuracies": 0.675000011920929,
1806
+ "rewards/chosen": NaN,
1807
+ "rewards/margins": NaN,
1808
+ "rewards/rejected": NaN,
1809
+ "step": 1000
1810
+ },
1811
+ {
1812
+ "epoch": 2.2394678492239466,
1813
+ "grad_norm": NaN,
1814
+ "learning_rate": 1.2749655884748788e-06,
1815
+ "log_odds_chosen": NaN,
1816
+ "log_odds_ratio": NaN,
1817
+ "logits/chosen": -2.649963617324829,
1818
+ "logits/rejected": -2.721240758895874,
1819
+ "logps/chosen": NaN,
1820
+ "logps/rejected": NaN,
1821
+ "loss": 0.9071,
1822
+ "nll_loss": 0.8600472211837769,
1823
+ "rewards/accuracies": 0.612500011920929,
1824
+ "rewards/chosen": NaN,
1825
+ "rewards/margins": NaN,
1826
+ "rewards/rejected": NaN,
1827
+ "step": 1010
1828
+ },
1829
+ {
1830
+ "epoch": 2.261640798226164,
1831
+ "grad_norm": NaN,
1832
+ "learning_rate": 1.205638216418864e-06,
1833
+ "log_odds_chosen": NaN,
1834
+ "log_odds_ratio": NaN,
1835
+ "logits/chosen": -2.6075966358184814,
1836
+ "logits/rejected": -2.6658735275268555,
1837
+ "logps/chosen": NaN,
1838
+ "logps/rejected": NaN,
1839
+ "loss": 1.3184,
1840
+ "nll_loss": 0.9156390428543091,
1841
+ "rewards/accuracies": 0.625,
1842
+ "rewards/chosen": NaN,
1843
+ "rewards/margins": NaN,
1844
+ "rewards/rejected": NaN,
1845
+ "step": 1020
1846
+ },
1847
+ {
1848
+ "epoch": 2.2838137472283813,
1849
+ "grad_norm": NaN,
1850
+ "learning_rate": 1.1379129603624472e-06,
1851
+ "log_odds_chosen": NaN,
1852
+ "log_odds_ratio": NaN,
1853
+ "logits/chosen": -2.5418643951416016,
1854
+ "logits/rejected": -2.5810935497283936,
1855
+ "logps/chosen": NaN,
1856
+ "logps/rejected": NaN,
1857
+ "loss": 1.3225,
1858
+ "nll_loss": 0.9440028071403503,
1859
+ "rewards/accuracies": 0.5874999761581421,
1860
+ "rewards/chosen": NaN,
1861
+ "rewards/margins": NaN,
1862
+ "rewards/rejected": NaN,
1863
+ "step": 1030
1864
+ },
1865
+ {
1866
+ "epoch": 2.305986696230599,
1867
+ "grad_norm": 0.6439170241355896,
1868
+ "learning_rate": 1.0718286498218834e-06,
1869
+ "log_odds_chosen": NaN,
1870
+ "log_odds_ratio": NaN,
1871
+ "logits/chosen": -2.5944840908050537,
1872
+ "logits/rejected": -2.6368420124053955,
1873
+ "logps/chosen": NaN,
1874
+ "logps/rejected": NaN,
1875
+ "loss": 1.3297,
1876
+ "nll_loss": 0.8718999028205872,
1877
+ "rewards/accuracies": 0.6875,
1878
+ "rewards/chosen": NaN,
1879
+ "rewards/margins": NaN,
1880
+ "rewards/rejected": NaN,
1881
+ "step": 1040
1882
+ },
1883
+ {
1884
+ "epoch": 2.328159645232816,
1885
+ "grad_norm": NaN,
1886
+ "learning_rate": 1.0074231734957184e-06,
1887
+ "log_odds_chosen": NaN,
1888
+ "log_odds_ratio": NaN,
1889
+ "logits/chosen": -2.5355989933013916,
1890
+ "logits/rejected": -2.5640969276428223,
1891
+ "logps/chosen": NaN,
1892
+ "logps/rejected": NaN,
1893
+ "loss": 1.1733,
1894
+ "nll_loss": 0.8988415002822876,
1895
+ "rewards/accuracies": 0.5375000238418579,
1896
+ "rewards/chosen": NaN,
1897
+ "rewards/margins": NaN,
1898
+ "rewards/rejected": NaN,
1899
+ "step": 1050
1900
+ },
1901
+ {
1902
+ "epoch": 2.3503325942350335,
1903
+ "grad_norm": NaN,
1904
+ "learning_rate": 9.447334575417189e-07,
1905
+ "log_odds_chosen": NaN,
1906
+ "log_odds_ratio": NaN,
1907
+ "logits/chosen": -2.605184555053711,
1908
+ "logits/rejected": -2.6584599018096924,
1909
+ "logps/chosen": NaN,
1910
+ "logps/rejected": NaN,
1911
+ "loss": 1.4157,
1912
+ "nll_loss": 0.8994711637496948,
1913
+ "rewards/accuracies": 0.625,
1914
+ "rewards/chosen": NaN,
1915
+ "rewards/margins": NaN,
1916
+ "rewards/rejected": NaN,
1917
+ "step": 1060
1918
+ },
1919
+ {
1920
+ "epoch": 2.3725055432372506,
1921
+ "grad_norm": NaN,
1922
+ "learning_rate": 8.837954444056825e-07,
1923
+ "log_odds_chosen": NaN,
1924
+ "log_odds_ratio": NaN,
1925
+ "logits/chosen": -2.521874189376831,
1926
+ "logits/rejected": -2.5487990379333496,
1927
+ "logps/chosen": NaN,
1928
+ "logps/rejected": NaN,
1929
+ "loss": 1.504,
1930
+ "nll_loss": 0.8935952186584473,
1931
+ "rewards/accuracies": 0.574999988079071,
1932
+ "rewards/chosen": NaN,
1933
+ "rewards/margins": NaN,
1934
+ "rewards/rejected": NaN,
1935
+ "step": 1070
1936
+ },
1937
+ {
1938
+ "epoch": 2.3946784922394677,
1939
+ "grad_norm": 0.6280531883239746,
1940
+ "learning_rate": 8.246440722142325e-07,
1941
+ "log_odds_chosen": NaN,
1942
+ "log_odds_ratio": NaN,
1943
+ "logits/chosen": -2.612034320831299,
1944
+ "logits/rejected": -2.640134811401367,
1945
+ "logps/chosen": NaN,
1946
+ "logps/rejected": NaN,
1947
+ "loss": 1.1654,
1948
+ "nll_loss": 0.9181571006774902,
1949
+ "rewards/accuracies": 0.6625000238418579,
1950
+ "rewards/chosen": NaN,
1951
+ "rewards/margins": NaN,
1952
+ "rewards/rejected": NaN,
1953
+ "step": 1080
1954
+ },
1955
+ {
1956
+ "epoch": 2.4168514412416853,
1957
+ "grad_norm": NaN,
1958
+ "learning_rate": 7.67313254743438e-07,
1959
+ "log_odds_chosen": NaN,
1960
+ "log_odds_ratio": NaN,
1961
+ "logits/chosen": -2.6642110347747803,
1962
+ "logits/rejected": -2.6616063117980957,
1963
+ "logps/chosen": NaN,
1964
+ "logps/rejected": NaN,
1965
+ "loss": 1.3256,
1966
+ "nll_loss": 0.9149085283279419,
1967
+ "rewards/accuracies": 0.675000011920929,
1968
+ "rewards/chosen": NaN,
1969
+ "rewards/margins": NaN,
1970
+ "rewards/rejected": NaN,
1971
+ "step": 1090
1972
+ },
1973
+ {
1974
+ "epoch": 2.4390243902439024,
1975
+ "grad_norm": NaN,
1976
+ "learning_rate": 7.118358619747322e-07,
1977
+ "log_odds_chosen": NaN,
1978
+ "log_odds_ratio": NaN,
1979
+ "logits/chosen": -2.5517077445983887,
1980
+ "logits/rejected": -2.5954713821411133,
1981
+ "logps/chosen": NaN,
1982
+ "logps/rejected": NaN,
1983
+ "loss": 1.3177,
1984
+ "nll_loss": 0.9105826616287231,
1985
+ "rewards/accuracies": 0.6625000238418579,
1986
+ "rewards/chosen": NaN,
1987
+ "rewards/margins": NaN,
1988
+ "rewards/rejected": NaN,
1989
+ "step": 1100
1990
+ },
1991
+ {
1992
+ "epoch": 2.4611973392461195,
1993
+ "grad_norm": NaN,
1994
+ "learning_rate": 6.582437012492725e-07,
1995
+ "log_odds_chosen": NaN,
1996
+ "log_odds_ratio": NaN,
1997
+ "logits/chosen": -2.6221938133239746,
1998
+ "logits/rejected": -2.6449408531188965,
1999
+ "logps/chosen": NaN,
2000
+ "logps/rejected": NaN,
2001
+ "loss": 1.387,
2002
+ "nll_loss": 0.891291618347168,
2003
+ "rewards/accuracies": 0.6000000238418579,
2004
+ "rewards/chosen": NaN,
2005
+ "rewards/margins": NaN,
2006
+ "rewards/rejected": NaN,
2007
+ "step": 1110
2008
+ },
2009
+ {
2010
+ "epoch": 2.483370288248337,
2011
+ "grad_norm": NaN,
2012
+ "learning_rate": 6.065674990315623e-07,
2013
+ "log_odds_chosen": NaN,
2014
+ "log_odds_ratio": NaN,
2015
+ "logits/chosen": -2.5601844787597656,
2016
+ "logits/rejected": -2.58024263381958,
2017
+ "logps/chosen": NaN,
2018
+ "logps/rejected": NaN,
2019
+ "loss": 1.2113,
2020
+ "nll_loss": 0.8098522424697876,
2021
+ "rewards/accuracies": 0.612500011920929,
2022
+ "rewards/chosen": NaN,
2023
+ "rewards/margins": NaN,
2024
+ "rewards/rejected": NaN,
2025
+ "step": 1120
2026
+ },
2027
+ {
2028
+ "epoch": 2.505543237250554,
2029
+ "grad_norm": NaN,
2030
+ "learning_rate": 5.568368832927742e-07,
2031
+ "log_odds_chosen": NaN,
2032
+ "log_odds_ratio": NaN,
2033
+ "logits/chosen": -2.5909504890441895,
2034
+ "logits/rejected": -2.596946954727173,
2035
+ "logps/chosen": NaN,
2036
+ "logps/rejected": NaN,
2037
+ "loss": 1.3932,
2038
+ "nll_loss": 0.9140310287475586,
2039
+ "rewards/accuracies": 0.625,
2040
+ "rewards/chosen": NaN,
2041
+ "rewards/margins": NaN,
2042
+ "rewards/rejected": NaN,
2043
+ "step": 1130
2044
+ },
2045
+ {
2046
+ "epoch": 2.5277161862527717,
2047
+ "grad_norm": NaN,
2048
+ "learning_rate": 5.090803665238872e-07,
2049
+ "log_odds_chosen": NaN,
2050
+ "log_odds_ratio": NaN,
2051
+ "logits/chosen": -2.5009472370147705,
2052
+ "logits/rejected": -2.5562808513641357,
2053
+ "logps/chosen": NaN,
2054
+ "logps/rejected": NaN,
2055
+ "loss": 1.2941,
2056
+ "nll_loss": 0.8312563896179199,
2057
+ "rewards/accuracies": 0.6499999761581421,
2058
+ "rewards/chosen": NaN,
2059
+ "rewards/margins": NaN,
2060
+ "rewards/rejected": NaN,
2061
+ "step": 1140
2062
+ },
2063
+ {
2064
+ "epoch": 2.549889135254989,
2065
+ "grad_norm": NaN,
2066
+ "learning_rate": 4.633253293883679e-07,
2067
+ "log_odds_chosen": NaN,
2068
+ "log_odds_ratio": NaN,
2069
+ "logits/chosen": -2.6316781044006348,
2070
+ "logits/rejected": -2.635262966156006,
2071
+ "logps/chosen": NaN,
2072
+ "logps/rejected": NaN,
2073
+ "loss": 1.4821,
2074
+ "nll_loss": 0.8716381192207336,
2075
+ "rewards/accuracies": 0.5625,
2076
+ "rewards/chosen": NaN,
2077
+ "rewards/margins": NaN,
2078
+ "rewards/rejected": NaN,
2079
+ "step": 1150
2080
+ },
2081
+ {
2082
+ "epoch": 2.5720620842572064,
2083
+ "grad_norm": NaN,
2084
+ "learning_rate": 4.19598005023774e-07,
2085
+ "log_odds_chosen": NaN,
2086
+ "log_odds_ratio": NaN,
2087
+ "logits/chosen": -2.6068694591522217,
2088
+ "logits/rejected": -2.650502920150757,
2089
+ "logps/chosen": NaN,
2090
+ "logps/rejected": NaN,
2091
+ "loss": 1.5451,
2092
+ "nll_loss": 0.9065351486206055,
2093
+ "rewards/accuracies": 0.4749999940395355,
2094
+ "rewards/chosen": NaN,
2095
+ "rewards/margins": NaN,
2096
+ "rewards/rejected": NaN,
2097
+ "step": 1160
2098
+ },
2099
+ {
2100
+ "epoch": 2.5942350332594235,
2101
+ "grad_norm": NaN,
2102
+ "learning_rate": 3.7792346400128183e-07,
2103
+ "log_odds_chosen": NaN,
2104
+ "log_odds_ratio": NaN,
2105
+ "logits/chosen": -2.579982280731201,
2106
+ "logits/rejected": -2.643984317779541,
2107
+ "logps/chosen": NaN,
2108
+ "logps/rejected": NaN,
2109
+ "loss": 1.3209,
2110
+ "nll_loss": 0.8348051905632019,
2111
+ "rewards/accuracies": 0.612500011920929,
2112
+ "rewards/chosen": NaN,
2113
+ "rewards/margins": NaN,
2114
+ "rewards/rejected": NaN,
2115
+ "step": 1170
2116
+ },
2117
+ {
2118
+ "epoch": 2.6164079822616406,
2119
+ "grad_norm": NaN,
2120
+ "learning_rate": 3.3832559995175116e-07,
2121
+ "log_odds_chosen": NaN,
2122
+ "log_odds_ratio": NaN,
2123
+ "logits/chosen": -2.5105443000793457,
2124
+ "logits/rejected": -2.57656192779541,
2125
+ "logps/chosen": NaN,
2126
+ "logps/rejected": NaN,
2127
+ "loss": 1.4288,
2128
+ "nll_loss": 0.997296154499054,
2129
+ "rewards/accuracies": 0.637499988079071,
2130
+ "rewards/chosen": NaN,
2131
+ "rewards/margins": NaN,
2132
+ "rewards/rejected": NaN,
2133
+ "step": 1180
2134
+ },
2135
+ {
2136
+ "epoch": 2.638580931263858,
2137
+ "grad_norm": NaN,
2138
+ "learning_rate": 3.0082711586658336e-07,
2139
+ "log_odds_chosen": NaN,
2140
+ "log_odds_ratio": NaN,
2141
+ "logits/chosen": -2.5682618618011475,
2142
+ "logits/rejected": -2.6190028190612793,
2143
+ "logps/chosen": NaN,
2144
+ "logps/rejected": NaN,
2145
+ "loss": 1.3811,
2146
+ "nll_loss": 0.840679943561554,
2147
+ "rewards/accuracies": 0.574999988079071,
2148
+ "rewards/chosen": NaN,
2149
+ "rewards/margins": NaN,
2150
+ "rewards/rejected": NaN,
2151
+ "step": 1190
2152
+ },
2153
+ {
2154
+ "epoch": 2.6607538802660753,
2155
+ "grad_norm": NaN,
2156
+ "learning_rate": 2.654495110812136e-07,
2157
+ "log_odds_chosen": NaN,
2158
+ "log_odds_ratio": NaN,
2159
+ "logits/chosen": -2.534421920776367,
2160
+ "logits/rejected": -2.5627925395965576,
2161
+ "logps/chosen": NaN,
2162
+ "logps/rejected": NaN,
2163
+ "loss": 1.4835,
2164
+ "nll_loss": 0.9845026135444641,
2165
+ "rewards/accuracies": 0.5249999761581421,
2166
+ "rewards/chosen": NaN,
2167
+ "rewards/margins": NaN,
2168
+ "rewards/rejected": NaN,
2169
+ "step": 1200
2170
+ },
2171
+ {
2172
+ "epoch": 2.682926829268293,
2173
+ "grad_norm": NaN,
2174
+ "learning_rate": 2.3221306894870962e-07,
2175
+ "log_odds_chosen": NaN,
2176
+ "log_odds_ratio": NaN,
2177
+ "logits/chosen": -2.597075939178467,
2178
+ "logits/rejected": -2.605375051498413,
2179
+ "logps/chosen": NaN,
2180
+ "logps/rejected": NaN,
2181
+ "loss": 1.9092,
2182
+ "nll_loss": 0.8531631231307983,
2183
+ "rewards/accuracies": 0.5249999761581421,
2184
+ "rewards/chosen": NaN,
2185
+ "rewards/margins": NaN,
2186
+ "rewards/rejected": NaN,
2187
+ "step": 1210
2188
+ },
2189
+ {
2190
+ "epoch": 2.70509977827051,
2191
+ "grad_norm": NaN,
2192
+ "learning_rate": 2.0113684521053663e-07,
2193
+ "log_odds_chosen": NaN,
2194
+ "log_odds_ratio": NaN,
2195
+ "logits/chosen": -2.5460121631622314,
2196
+ "logits/rejected": -2.6030726432800293,
2197
+ "logps/chosen": NaN,
2198
+ "logps/rejected": NaN,
2199
+ "loss": 1.5883,
2200
+ "nll_loss": 0.8551692962646484,
2201
+ "rewards/accuracies": 0.5625,
2202
+ "rewards/chosen": NaN,
2203
+ "rewards/margins": NaN,
2204
+ "rewards/rejected": NaN,
2205
+ "step": 1220
2206
+ },
2207
+ {
2208
+ "epoch": 2.7272727272727275,
2209
+ "grad_norm": NaN,
2210
+ "learning_rate": 1.722386570711647e-07,
2211
+ "log_odds_chosen": NaN,
2212
+ "log_odds_ratio": NaN,
2213
+ "logits/chosen": -2.559178352355957,
2214
+ "logits/rejected": -2.601423740386963,
2215
+ "logps/chosen": NaN,
2216
+ "logps/rejected": NaN,
2217
+ "loss": 1.5836,
2218
+ "nll_loss": 0.8850408792495728,
2219
+ "rewards/accuracies": 0.5375000238418579,
2220
+ "rewards/chosen": NaN,
2221
+ "rewards/margins": NaN,
2222
+ "rewards/rejected": NaN,
2223
+ "step": 1230
2224
+ },
2225
+ {
2226
+ "epoch": 2.7494456762749446,
2227
+ "grad_norm": 0.6112498641014099,
2228
+ "learning_rate": 1.455350729827698e-07,
2229
+ "log_odds_chosen": NaN,
2230
+ "log_odds_ratio": NaN,
2231
+ "logits/chosen": -2.579529285430908,
2232
+ "logits/rejected": -2.5950798988342285,
2233
+ "logps/chosen": NaN,
2234
+ "logps/rejected": NaN,
2235
+ "loss": 1.3608,
2236
+ "nll_loss": 0.8255780339241028,
2237
+ "rewards/accuracies": 0.6625000238418579,
2238
+ "rewards/chosen": NaN,
2239
+ "rewards/margins": NaN,
2240
+ "rewards/rejected": NaN,
2241
+ "step": 1240
2242
+ },
2243
+ {
2244
+ "epoch": 2.7716186252771617,
2245
+ "grad_norm": NaN,
2246
+ "learning_rate": 1.2104140314590194e-07,
2247
+ "log_odds_chosen": NaN,
2248
+ "log_odds_ratio": NaN,
2249
+ "logits/chosen": -2.525857448577881,
2250
+ "logits/rejected": -2.587132215499878,
2251
+ "logps/chosen": NaN,
2252
+ "logps/rejected": NaN,
2253
+ "loss": 1.5238,
2254
+ "nll_loss": 0.9289102554321289,
2255
+ "rewards/accuracies": 0.6499999761581421,
2256
+ "rewards/chosen": NaN,
2257
+ "rewards/margins": NaN,
2258
+ "rewards/rejected": NaN,
2259
+ "step": 1250
2260
+ },
2261
+ {
2262
+ "epoch": 2.7937915742793793,
2263
+ "grad_norm": NaN,
2264
+ "learning_rate": 9.877169073155167e-08,
2265
+ "log_odds_chosen": NaN,
2266
+ "log_odds_ratio": NaN,
2267
+ "logits/chosen": -2.533351182937622,
2268
+ "logits/rejected": -2.584251880645752,
2269
+ "logps/chosen": NaN,
2270
+ "logps/rejected": NaN,
2271
+ "loss": 1.4373,
2272
+ "nll_loss": 0.9016596674919128,
2273
+ "rewards/accuracies": 0.5375000238418579,
2274
+ "rewards/chosen": NaN,
2275
+ "rewards/margins": NaN,
2276
+ "rewards/rejected": NaN,
2277
+ "step": 1260
2278
+ },
2279
+ {
2280
+ "epoch": 2.8159645232815964,
2281
+ "grad_norm": NaN,
2282
+ "learning_rate": 7.873870382965364e-08,
2283
+ "log_odds_chosen": NaN,
2284
+ "log_odds_ratio": NaN,
2285
+ "logits/chosen": -2.5861144065856934,
2286
+ "logits/rejected": -2.612295150756836,
2287
+ "logps/chosen": NaN,
2288
+ "logps/rejected": NaN,
2289
+ "loss": 1.5352,
2290
+ "nll_loss": 0.8941007852554321,
2291
+ "rewards/accuracies": 0.612500011920929,
2292
+ "rewards/chosen": NaN,
2293
+ "rewards/margins": NaN,
2294
+ "rewards/rejected": NaN,
2295
+ "step": 1270
2296
+ },
2297
+ {
2298
+ "epoch": 2.8381374722838135,
2299
+ "grad_norm": 0.6927753686904907,
2300
+ "learning_rate": 6.095392812864863e-08,
2301
+ "log_odds_chosen": NaN,
2302
+ "log_odds_ratio": NaN,
2303
+ "logits/chosen": -2.6299588680267334,
2304
+ "logits/rejected": -2.654484272003174,
2305
+ "logps/chosen": NaN,
2306
+ "logps/rejected": NaN,
2307
+ "loss": 1.1739,
2308
+ "nll_loss": 0.9128586053848267,
2309
+ "rewards/accuracies": 0.5,
2310
+ "rewards/chosen": NaN,
2311
+ "rewards/margins": NaN,
2312
+ "rewards/rejected": NaN,
2313
+ "step": 1280
2314
+ },
2315
+ {
2316
+ "epoch": 2.860310421286031,
2317
+ "grad_norm": 0.6138539910316467,
2318
+ "learning_rate": 4.5427560330289824e-08,
2319
+ "log_odds_chosen": NaN,
2320
+ "log_odds_ratio": NaN,
2321
+ "logits/chosen": -2.5274271965026855,
2322
+ "logits/rejected": -2.5881905555725098,
2323
+ "logps/chosen": NaN,
2324
+ "logps/rejected": NaN,
2325
+ "loss": 1.0278,
2326
+ "nll_loss": 0.8638602495193481,
2327
+ "rewards/accuracies": 0.6625000238418579,
2328
+ "rewards/chosen": NaN,
2329
+ "rewards/margins": NaN,
2330
+ "rewards/rejected": NaN,
2331
+ "step": 1290
2332
+ },
2333
+ {
2334
+ "epoch": 2.882483370288248,
2335
+ "grad_norm": NaN,
2336
+ "learning_rate": 3.216850230348145e-08,
2337
+ "log_odds_chosen": NaN,
2338
+ "log_odds_ratio": NaN,
2339
+ "logits/chosen": -2.6004536151885986,
2340
+ "logits/rejected": -2.639181613922119,
2341
+ "logps/chosen": NaN,
2342
+ "logps/rejected": NaN,
2343
+ "loss": 1.3678,
2344
+ "nll_loss": 0.9433631896972656,
2345
+ "rewards/accuracies": 0.5874999761581421,
2346
+ "rewards/chosen": NaN,
2347
+ "rewards/margins": NaN,
2348
+ "rewards/rejected": NaN,
2349
+ "step": 1300
2350
+ },
2351
+ {
2352
+ "epoch": 2.9046563192904657,
2353
+ "grad_norm": NaN,
2354
+ "learning_rate": 2.1184355980488067e-08,
2355
+ "log_odds_chosen": NaN,
2356
+ "log_odds_ratio": NaN,
2357
+ "logits/chosen": -2.6405842304229736,
2358
+ "logits/rejected": -2.632291316986084,
2359
+ "logps/chosen": NaN,
2360
+ "logps/rejected": NaN,
2361
+ "loss": 1.7057,
2362
+ "nll_loss": 0.9545801281929016,
2363
+ "rewards/accuracies": 0.612500011920929,
2364
+ "rewards/chosen": NaN,
2365
+ "rewards/margins": NaN,
2366
+ "rewards/rejected": NaN,
2367
+ "step": 1310
2368
+ },
2369
+ {
2370
+ "epoch": 2.926829268292683,
2371
+ "grad_norm": NaN,
2372
+ "learning_rate": 1.2481418998456118e-08,
2373
+ "log_odds_chosen": NaN,
2374
+ "log_odds_ratio": NaN,
2375
+ "logits/chosen": -2.552712917327881,
2376
+ "logits/rejected": -2.603447437286377,
2377
+ "logps/chosen": NaN,
2378
+ "logps/rejected": NaN,
2379
+ "loss": 1.1937,
2380
+ "nll_loss": 0.885978102684021,
2381
+ "rewards/accuracies": 0.612500011920929,
2382
+ "rewards/chosen": NaN,
2383
+ "rewards/margins": NaN,
2384
+ "rewards/rejected": NaN,
2385
+ "step": 1320
2386
+ },
2387
+ {
2388
+ "epoch": 2.9490022172949004,
2389
+ "grad_norm": NaN,
2390
+ "learning_rate": 6.064681088730151e-09,
2391
+ "log_odds_chosen": NaN,
2392
+ "log_odds_ratio": NaN,
2393
+ "logits/chosen": -2.49711275100708,
2394
+ "logits/rejected": -2.5226452350616455,
2395
+ "logps/chosen": NaN,
2396
+ "logps/rejected": NaN,
2397
+ "loss": 1.2368,
2398
+ "nll_loss": 0.8924044370651245,
2399
+ "rewards/accuracies": 0.574999988079071,
2400
+ "rewards/chosen": NaN,
2401
+ "rewards/margins": NaN,
2402
+ "rewards/rejected": NaN,
2403
+ "step": 1330
2404
+ },
2405
+ {
2406
+ "epoch": 2.9711751662971175,
2407
+ "grad_norm": NaN,
2408
+ "learning_rate": 1.9378212160501285e-09,
2409
+ "log_odds_chosen": NaN,
2410
+ "log_odds_ratio": NaN,
2411
+ "logits/chosen": -2.568042755126953,
2412
+ "logits/rejected": -2.608767032623291,
2413
+ "logps/chosen": NaN,
2414
+ "logps/rejected": NaN,
2415
+ "loss": 1.4421,
2416
+ "nll_loss": 0.8176005482673645,
2417
+ "rewards/accuracies": 0.6000000238418579,
2418
+ "rewards/chosen": NaN,
2419
+ "rewards/margins": NaN,
2420
+ "rewards/rejected": NaN,
2421
+ "step": 1340
2422
+ },
2423
+ {
2424
+ "epoch": 2.9933481152993346,
2425
+ "grad_norm": NaN,
2426
+ "learning_rate": 1.0320546925512985e-10,
2427
+ "log_odds_chosen": NaN,
2428
+ "log_odds_ratio": NaN,
2429
+ "logits/chosen": -2.606173276901245,
2430
+ "logits/rejected": -2.6094250679016113,
2431
+ "logps/chosen": NaN,
2432
+ "logps/rejected": NaN,
2433
+ "loss": 1.9638,
2434
+ "nll_loss": 0.9152927398681641,
2435
+ "rewards/accuracies": 0.5874999761581421,
2436
+ "rewards/chosen": NaN,
2437
+ "rewards/margins": NaN,
2438
+ "rewards/rejected": NaN,
2439
+ "step": 1350
2440
+ },
2441
+ {
2442
+ "epoch": 3.0,
2443
+ "step": 1353,
2444
+ "total_flos": 0.0,
2445
+ "train_loss": 1.4294498003771459,
2446
+ "train_runtime": 7808.9602,
2447
+ "train_samples_per_second": 2.77,
2448
+ "train_steps_per_second": 0.173
2449
+ }
2450
+ ],
2451
+ "logging_steps": 10,
2452
+ "max_steps": 1353,
2453
+ "num_input_tokens_seen": 0,
2454
+ "num_train_epochs": 3,
2455
+ "save_steps": 200,
2456
+ "stateful_callbacks": {
2457
+ "TrainerControl": {
2458
+ "args": {
2459
+ "should_epoch_stop": false,
2460
+ "should_evaluate": false,
2461
+ "should_log": false,
2462
+ "should_save": true,
2463
+ "should_training_stop": true
2464
+ },
2465
+ "attributes": {}
2466
+ }
2467
+ },
2468
+ "total_flos": 0.0,
2469
+ "train_batch_size": 4,
2470
+ "trial_name": null,
2471
+ "trial_params": null
2472
+ }