BounharAbdelaziz
commited on
Commit
•
1ca7c48
1
Parent(s):
3b3a6bb
Update README.md
Browse files
README.md
CHANGED
@@ -1,27 +1,32 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
base_model: Helsinki-NLP/opus-mt-tc-big-en-ar
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
metrics:
|
7 |
- bleu
|
|
|
|
|
8 |
model-index:
|
9 |
- name: Terjman-Large
|
10 |
results: []
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
# Terjman-Large
|
14 |
|
15 |
Our model is built upon the powerful Transformer architecture, leveraging state-of-the-art natural language processing techniques.
|
16 |
-
It
|
17 |
|
18 |
It achieves the following results on the evaluation set:
|
19 |
- Loss: 3.2078
|
20 |
- Bleu: 8.3292
|
21 |
- Gen Len: 34.4959
|
|
|
|
|
22 |
|
23 |
|
24 |
-
|
25 |
|
26 |
The following hyperparameters were used during training:
|
27 |
- learning_rate: 3e-05
|
@@ -35,7 +40,55 @@ The following hyperparameters were used during training:
|
|
35 |
- lr_scheduler_warmup_ratio: 0.03
|
36 |
- num_epochs: 40
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
41 |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:-------:|
|
@@ -80,57 +133,9 @@ The following hyperparameters were used during training:
|
|
80 |
| 3.2445 | 38.9994 | 15902 | 3.2079 | 8.3968 | 34.6722 |
|
81 |
| 3.2356 | 39.9264 | 16280 | 3.2078 | 8.3292 | 34.4959 |
|
82 |
|
83 |
-
|
84 |
### Framework versions
|
85 |
|
86 |
- Transformers 4.40.2
|
87 |
- Pytorch 2.2.1+cu121
|
88 |
- Datasets 2.19.1
|
89 |
-
- Tokenizers 0.19.1
|
90 |
-
|
91 |
-
|
92 |
-
## Usage
|
93 |
-
|
94 |
-
Using our model for translation is simple and straightforward.
|
95 |
-
You can integrate it into your projects or workflows via the Hugging Face Transformers library.
|
96 |
-
Here's a basic example of how to use the model in Python:
|
97 |
-
|
98 |
-
```python
|
99 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
100 |
-
|
101 |
-
# Load the tokenizer and model
|
102 |
-
tokenizer = AutoTokenizer.from_pretrained("atlasia/Terjman-Large")
|
103 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("atlasia/Terjman-Large")
|
104 |
-
|
105 |
-
# Define your Moroccan Darija Arabizi text
|
106 |
-
input_text = "Your english text goes here."
|
107 |
-
|
108 |
-
# Tokenize the input text
|
109 |
-
input_tokens = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
110 |
-
|
111 |
-
# Perform translation
|
112 |
-
output_tokens = model.generate(**input_tokens)
|
113 |
-
|
114 |
-
# Decode the output tokens
|
115 |
-
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
116 |
-
|
117 |
-
print("Transliteration:", output_text)
|
118 |
-
```
|
119 |
-
|
120 |
-
## Example
|
121 |
-
|
122 |
-
Let's see an example of transliterating Moroccan Darija Arabizi to Arabic:
|
123 |
-
|
124 |
-
**Input**: "Hello my friend, how's life in Morocco"
|
125 |
-
|
126 |
-
**Output**: "مرحبا يا صاحبي, كيفاش الحياة فالمغرب"
|
127 |
-
|
128 |
-
## Limiations
|
129 |
-
|
130 |
-
This version has some limitations mainly due to the Tokenizer.
|
131 |
-
We're currently collecting more data with the aim of continous improvements.
|
132 |
-
|
133 |
-
## Feedback
|
134 |
-
|
135 |
-
We're continuously striving to improve our model's performance and usability and we will be improving it incrementaly.
|
136 |
-
If you have any feedback, suggestions, or encounter any issues, please don't hesitate to reach out to us.
|
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
base_model: Helsinki-NLP/opus-mt-tc-big-en-ar
|
|
|
|
|
4 |
metrics:
|
5 |
- bleu
|
6 |
+
datasets:
|
7 |
+
- atlasia/darija_english
|
8 |
model-index:
|
9 |
- name: Terjman-Large
|
10 |
results: []
|
11 |
+
language:
|
12 |
+
- ar
|
13 |
+
- en
|
14 |
---
|
15 |
|
16 |
+
# Terjman-Large (240M params)
|
17 |
|
18 |
Our model is built upon the powerful Transformer architecture, leveraging state-of-the-art natural language processing techniques.
|
19 |
+
It is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-ar) on a the [darija_english](atlasia/darija_english) dataset enhanced with curated corpora ensuring high-quality and accurate translations.
|
20 |
|
21 |
It achieves the following results on the evaluation set:
|
22 |
- Loss: 3.2078
|
23 |
- Bleu: 8.3292
|
24 |
- Gen Len: 34.4959
|
25 |
+
|
26 |
+
The finetuning was conducted using a A**100-40GB** and took **23 hours**.
|
27 |
|
28 |
|
29 |
+
## Training hyperparameters
|
30 |
|
31 |
The following hyperparameters were used during training:
|
32 |
- learning_rate: 3e-05
|
|
|
40 |
- lr_scheduler_warmup_ratio: 0.03
|
41 |
- num_epochs: 40
|
42 |
|
43 |
+
|
44 |
+
## Usage
|
45 |
+
|
46 |
+
Using our model for translation is simple and straightforward.
|
47 |
+
You can integrate it into your projects or workflows via the Hugging Face Transformers library.
|
48 |
+
Here's a basic example of how to use the model in Python:
|
49 |
+
|
50 |
+
```python
|
51 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
52 |
+
|
53 |
+
# Load the tokenizer and model
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("atlasia/Terjman-Large")
|
55 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("atlasia/Terjman-Large")
|
56 |
+
|
57 |
+
# Define your Moroccan Darija Arabizi text
|
58 |
+
input_text = "Your english text goes here."
|
59 |
+
|
60 |
+
# Tokenize the input text
|
61 |
+
input_tokens = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
62 |
+
|
63 |
+
# Perform translation
|
64 |
+
output_tokens = model.generate(**input_tokens)
|
65 |
+
|
66 |
+
# Decode the output tokens
|
67 |
+
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
68 |
+
|
69 |
+
print("Translation:", output_text)
|
70 |
+
```
|
71 |
+
|
72 |
+
## Example
|
73 |
+
|
74 |
+
Let's see an example of transliterating Moroccan Darija Arabizi to Arabic:
|
75 |
+
|
76 |
+
**Input**: "Hello my friend, how's life in Morocco"
|
77 |
+
|
78 |
+
**Output**: "مرحبا يا صاحبي, كيفاش الحياة فالمغرب"
|
79 |
+
|
80 |
+
## Limiations
|
81 |
+
|
82 |
+
This version has some limitations mainly due to the Tokenizer.
|
83 |
+
We're currently collecting more data with the aim of continous improvements.
|
84 |
+
|
85 |
+
## Feedback
|
86 |
+
|
87 |
+
We're continuously striving to improve our model's performance and usability and we will be improving it incrementaly.
|
88 |
+
If you have any feedback, suggestions, or encounter any issues, please don't hesitate to reach out to us.
|
89 |
+
|
90 |
+
|
91 |
+
## Training results
|
92 |
|
93 |
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
94 |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:-------:|
|
|
|
133 |
| 3.2445 | 38.9994 | 15902 | 3.2079 | 8.3968 | 34.6722 |
|
134 |
| 3.2356 | 39.9264 | 16280 | 3.2078 | 8.3292 | 34.4959 |
|
135 |
|
|
|
136 |
### Framework versions
|
137 |
|
138 |
- Transformers 4.40.2
|
139 |
- Pytorch 2.2.1+cu121
|
140 |
- Datasets 2.19.1
|
141 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|