Create metrics.log
Browse files- metrics.log +198 -0
metrics.log
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Subset ('m0',) accuracies
|
2 |
+
{'m1': 0.6553, 'm2': 0.6929, 'm3': 0.6706, 'm4': 0.3879}
|
3 |
+
Mean subset ('m0',) accuracies : 0.601675
|
4 |
+
Subset ('m1',) accuracies
|
5 |
+
{'m0': 0.6003, 'm2': 0.8225, 'm3': 0.8014, 'm4': 0.4185}
|
6 |
+
Mean subset ('m1',) accuracies : 0.660675
|
7 |
+
Subset ('m2',) accuracies
|
8 |
+
{'m0': 0.5994, 'm1': 0.745, 'm3': 0.7634, 'm4': 0.4321}
|
9 |
+
Mean subset ('m2',) accuracies : 0.6349750000000001
|
10 |
+
Subset ('m3',) accuracies
|
11 |
+
{'m0': 0.5874, 'm1': 0.7106, 'm2': 0.7611, 'm4': 0.3805}
|
12 |
+
Mean subset ('m3',) accuracies : 0.6099
|
13 |
+
Subset ('m4',) accuracies
|
14 |
+
{'m0': 0.5231, 'm1': 0.6164, 'm2': 0.6526, 'm3': 0.6425}
|
15 |
+
Mean subset ('m4',) accuracies : 0.60865
|
16 |
+
Subset ('m0', 'm1') accuracies
|
17 |
+
{'m2': 0.9113, 'm3': 0.8916, 'm4': 0.4715}
|
18 |
+
Mean subset ('m0', 'm1') accuracies : 0.7581333333333333
|
19 |
+
Subset ('m0', 'm2') accuracies
|
20 |
+
{'m1': 0.8611, 'm3': 0.8683, 'm4': 0.4744}
|
21 |
+
Mean subset ('m0', 'm2') accuracies : 0.7346
|
22 |
+
Subset ('m0', 'm3') accuracies
|
23 |
+
{'m1': 0.8411, 'm2': 0.882, 'm4': 0.4446}
|
24 |
+
Mean subset ('m0', 'm3') accuracies : 0.7225666666666667
|
25 |
+
Subset ('m0', 'm4') accuracies
|
26 |
+
{'m1': 0.8076, 'm2': 0.8419, 'm3': 0.8209}
|
27 |
+
Mean subset ('m0', 'm4') accuracies : 0.8234666666666666
|
28 |
+
Subset ('m1', 'm2') accuracies
|
29 |
+
{'m0': 0.6707, 'm3': 0.9068, 'm4': 0.4862}
|
30 |
+
Mean subset ('m1', 'm2') accuracies : 0.6879000000000001
|
31 |
+
Subset ('m1', 'm3') accuracies
|
32 |
+
{'m0': 0.6759, 'm2': 0.9135, 'm4': 0.4582}
|
33 |
+
Mean subset ('m1', 'm3') accuracies : 0.6825333333333333
|
34 |
+
Subset ('m1', 'm4') accuracies
|
35 |
+
{'m0': 0.6602, 'm2': 0.9042, 'm3': 0.882}
|
36 |
+
Mean subset ('m1', 'm4') accuracies : 0.8154666666666667
|
37 |
+
Subset ('m2', 'm3') accuracies
|
38 |
+
{'m0': 0.6568, 'm1': 0.8582, 'm4': 0.458}
|
39 |
+
Mean subset ('m2', 'm3') accuracies : 0.6576666666666667
|
40 |
+
Subset ('m2', 'm4') accuracies
|
41 |
+
{'m0': 0.6542, 'm1': 0.8429, 'm3': 0.8494}
|
42 |
+
Mean subset ('m2', 'm4') accuracies : 0.7821666666666668
|
43 |
+
Subset ('m3', 'm4') accuracies
|
44 |
+
{'m0': 0.6504, 'm1': 0.8341, 'm2': 0.8772}
|
45 |
+
Mean subset ('m3', 'm4') accuracies : 0.7872333333333333
|
46 |
+
Subset ('m0', 'm1', 'm2') accuracies
|
47 |
+
{'m3': 0.9355, 'm4': 0.4992}
|
48 |
+
Mean subset ('m0', 'm1', 'm2') accuracies : 0.7173499999999999
|
49 |
+
Subset ('m0', 'm1', 'm3') accuracies
|
50 |
+
{'m2': 0.9518, 'm4': 0.4745}
|
51 |
+
Mean subset ('m0', 'm1', 'm3') accuracies : 0.71315
|
52 |
+
Subset ('m0', 'm1', 'm4') accuracies
|
53 |
+
{'m2': 0.946, 'm3': 0.9251}
|
54 |
+
Mean subset ('m0', 'm1', 'm4') accuracies : 0.93555
|
55 |
+
Subset ('m0', 'm2', 'm3') accuracies
|
56 |
+
{'m1': 0.9094, 'm4': 0.4773}
|
57 |
+
Mean subset ('m0', 'm2', 'm3') accuracies : 0.69335
|
58 |
+
Subset ('m0', 'm2', 'm4') accuracies
|
59 |
+
{'m1': 0.9067, 'm3': 0.9134}
|
60 |
+
Mean subset ('m0', 'm2', 'm4') accuracies : 0.91005
|
61 |
+
Subset ('m0', 'm3', 'm4') accuracies
|
62 |
+
{'m1': 0.8927, 'm2': 0.9269}
|
63 |
+
Mean subset ('m0', 'm3', 'm4') accuracies : 0.9097999999999999
|
64 |
+
Subset ('m1', 'm2', 'm3') accuracies
|
65 |
+
{'m0': 0.6859, 'm4': 0.4952}
|
66 |
+
Mean subset ('m1', 'm2', 'm3') accuracies : 0.5905499999999999
|
67 |
+
Subset ('m1', 'm2', 'm4') accuracies
|
68 |
+
{'m0': 0.678, 'm3': 0.9321}
|
69 |
+
Mean subset ('m1', 'm2', 'm4') accuracies : 0.80505
|
70 |
+
Subset ('m1', 'm3', 'm4') accuracies
|
71 |
+
{'m0': 0.6717, 'm2': 0.9474}
|
72 |
+
Mean subset ('m1', 'm3', 'm4') accuracies : 0.80955
|
73 |
+
Subset ('m2', 'm3', 'm4') accuracies
|
74 |
+
{'m0': 0.6716, 'm1': 0.9043}
|
75 |
+
Mean subset ('m2', 'm3', 'm4') accuracies : 0.7879499999999999
|
76 |
+
Subset ('m0', 'm1', 'm2', 'm3') accuracies
|
77 |
+
{'m4': 0.5001}
|
78 |
+
Mean subset ('m0', 'm1', 'm2', 'm3') accuracies : 0.5001
|
79 |
+
Subset ('m0', 'm1', 'm2', 'm4') accuracies
|
80 |
+
{'m3': 0.9502}
|
81 |
+
Mean subset ('m0', 'm1', 'm2', 'm4') accuracies : 0.9502
|
82 |
+
Subset ('m0', 'm1', 'm3', 'm4') accuracies
|
83 |
+
{'m2': 0.9686}
|
84 |
+
Mean subset ('m0', 'm1', 'm3', 'm4') accuracies : 0.9686
|
85 |
+
Subset ('m0', 'm2', 'm3', 'm4') accuracies
|
86 |
+
{'m1': 0.932}
|
87 |
+
Mean subset ('m0', 'm2', 'm3', 'm4') accuracies : 0.932
|
88 |
+
Subset ('m1', 'm2', 'm3', 'm4') accuracies
|
89 |
+
{'m0': 0.6784}
|
90 |
+
Mean subset ('m1', 'm2', 'm3', 'm4') accuracies : 0.6784
|
91 |
+
Conditional accuracies for 0 modalities : 0.623175 +- 0.021885800190991435
|
92 |
+
Conditional accuracies for 1 modalities : 0.7451733333333334 +- 0.05464502579782026
|
93 |
+
Conditional accuracies for 2 modalities : 0.7872349999999999 +- 0.10525719464720691
|
94 |
+
Conditional accuracies for 3 modalities : 0.80586 +- 0.18599186648883334
|
95 |
+
Joint coherence : 0.11299999803304672
|
96 |
+
Joint likelihood : tensor(9869.6572)
|
97 |
+
Joint likelihood : tensor(9869.6572)
|
98 |
+
Joint likelihood from subset ['m0', 'm1', 'm2', 'm3', 'm4'] : tensor(9359.4346)
|
99 |
+
Joint likelihood from subset ['m0', 'm1', 'm2', 'm3', 'm4'] : tensor(9359.4346)
|
100 |
+
Subset ('m0',) accuracies
|
101 |
+
{'m1': 0.6459, 'm2': 0.6941, 'm3': 0.6773, 'm4': 0.3899}
|
102 |
+
Mean subset ('m0',) accuracies : 0.6018
|
103 |
+
Subset ('m1',) accuracies
|
104 |
+
{'m0': 0.6023, 'm2': 0.8213, 'm3': 0.8028, 'm4': 0.4117}
|
105 |
+
Mean subset ('m1',) accuracies : 0.659525
|
106 |
+
Subset ('m2',) accuracies
|
107 |
+
{'m0': 0.6104, 'm1': 0.7504, 'm3': 0.7631, 'm4': 0.4405}
|
108 |
+
Mean subset ('m2',) accuracies : 0.6411
|
109 |
+
Subset ('m3',) accuracies
|
110 |
+
{'m0': 0.5829, 'm1': 0.7066, 'm2': 0.7573, 'm4': 0.3816}
|
111 |
+
Mean subset ('m3',) accuracies : 0.6071
|
112 |
+
Subset ('m4',) accuracies
|
113 |
+
{'m0': 0.525, 'm1': 0.6207, 'm2': 0.6525, 'm3': 0.6384}
|
114 |
+
Mean subset ('m4',) accuracies : 0.60915
|
115 |
+
Subset ('m0', 'm1') accuracies
|
116 |
+
{'m2': 0.9177, 'm3': 0.8918, 'm4': 0.4677}
|
117 |
+
Mean subset ('m0', 'm1') accuracies : 0.7590666666666666
|
118 |
+
Subset ('m0', 'm2') accuracies
|
119 |
+
{'m1': 0.8555, 'm3': 0.8679, 'm4': 0.4769}
|
120 |
+
Mean subset ('m0', 'm2') accuracies : 0.7334333333333333
|
121 |
+
Subset ('m0', 'm3') accuracies
|
122 |
+
{'m1': 0.8404, 'm2': 0.8825, 'm4': 0.4405}
|
123 |
+
Mean subset ('m0', 'm3') accuracies : 0.7211333333333334
|
124 |
+
Subset ('m0', 'm4') accuracies
|
125 |
+
{'m1': 0.8096, 'm2': 0.8436, 'm3': 0.8244}
|
126 |
+
Mean subset ('m0', 'm4') accuracies : 0.8258666666666666
|
127 |
+
Subset ('m1', 'm2') accuracies
|
128 |
+
{'m0': 0.6754, 'm3': 0.9021, 'm4': 0.4867}
|
129 |
+
Mean subset ('m1', 'm2') accuracies : 0.6880666666666667
|
130 |
+
Subset ('m1', 'm3') accuracies
|
131 |
+
{'m0': 0.6831, 'm2': 0.9153, 'm4': 0.4544}
|
132 |
+
Mean subset ('m1', 'm3') accuracies : 0.6842666666666667
|
133 |
+
Subset ('m1', 'm4') accuracies
|
134 |
+
{'m0': 0.6599, 'm2': 0.9068, 'm3': 0.8763}
|
135 |
+
Mean subset ('m1', 'm4') accuracies : 0.8143333333333334
|
136 |
+
Subset ('m2', 'm3') accuracies
|
137 |
+
{'m0': 0.6612, 'm1': 0.8607, 'm4': 0.4617}
|
138 |
+
Mean subset ('m2', 'm3') accuracies : 0.6612
|
139 |
+
Subset ('m2', 'm4') accuracies
|
140 |
+
{'m0': 0.6416, 'm1': 0.8487, 'm3': 0.8546}
|
141 |
+
Mean subset ('m2', 'm4') accuracies : 0.7816333333333333
|
142 |
+
Subset ('m3', 'm4') accuracies
|
143 |
+
{'m0': 0.6426, 'm1': 0.8337, 'm2': 0.8705}
|
144 |
+
Mean subset ('m3', 'm4') accuracies : 0.7822666666666667
|
145 |
+
Subset ('m0', 'm1', 'm2') accuracies
|
146 |
+
{'m3': 0.9379, 'm4': 0.5052}
|
147 |
+
Mean subset ('m0', 'm1', 'm2') accuracies : 0.7215499999999999
|
148 |
+
Subset ('m0', 'm1', 'm3') accuracies
|
149 |
+
{'m2': 0.9503, 'm4': 0.4788}
|
150 |
+
Mean subset ('m0', 'm1', 'm3') accuracies : 0.71455
|
151 |
+
Subset ('m0', 'm1', 'm4') accuracies
|
152 |
+
{'m2': 0.9495, 'm3': 0.928}
|
153 |
+
Mean subset ('m0', 'm1', 'm4') accuracies : 0.93875
|
154 |
+
Subset ('m0', 'm2', 'm3') accuracies
|
155 |
+
{'m1': 0.9089, 'm4': 0.4778}
|
156 |
+
Mean subset ('m0', 'm2', 'm3') accuracies : 0.69335
|
157 |
+
Subset ('m0', 'm2', 'm4') accuracies
|
158 |
+
{'m1': 0.9085, 'm3': 0.9114}
|
159 |
+
Mean subset ('m0', 'm2', 'm4') accuracies : 0.90995
|
160 |
+
Subset ('m0', 'm3', 'm4') accuracies
|
161 |
+
{'m1': 0.8907, 'm2': 0.931}
|
162 |
+
Mean subset ('m0', 'm3', 'm4') accuracies : 0.91085
|
163 |
+
Subset ('m1', 'm2', 'm3') accuracies
|
164 |
+
{'m0': 0.6839, 'm4': 0.4954}
|
165 |
+
Mean subset ('m1', 'm2', 'm3') accuracies : 0.58965
|
166 |
+
Subset ('m1', 'm2', 'm4') accuracies
|
167 |
+
{'m0': 0.6741, 'm3': 0.9315}
|
168 |
+
Mean subset ('m1', 'm2', 'm4') accuracies : 0.8028
|
169 |
+
Subset ('m1', 'm3', 'm4') accuracies
|
170 |
+
{'m0': 0.6853, 'm2': 0.9491}
|
171 |
+
Mean subset ('m1', 'm3', 'm4') accuracies : 0.8172
|
172 |
+
Subset ('m2', 'm3', 'm4') accuracies
|
173 |
+
{'m0': 0.6704, 'm1': 0.9033}
|
174 |
+
Mean subset ('m2', 'm3', 'm4') accuracies : 0.78685
|
175 |
+
Subset ('m0', 'm1', 'm2', 'm3') accuracies
|
176 |
+
{'m4': 0.4945}
|
177 |
+
Mean subset ('m0', 'm1', 'm2', 'm3') accuracies : 0.4945
|
178 |
+
Subset ('m0', 'm1', 'm2', 'm4') accuracies
|
179 |
+
{'m3': 0.9466}
|
180 |
+
Mean subset ('m0', 'm1', 'm2', 'm4') accuracies : 0.9466
|
181 |
+
Subset ('m0', 'm1', 'm3', 'm4') accuracies
|
182 |
+
{'m2': 0.9702}
|
183 |
+
Mean subset ('m0', 'm1', 'm3', 'm4') accuracies : 0.9702
|
184 |
+
Subset ('m0', 'm2', 'm3', 'm4') accuracies
|
185 |
+
{'m1': 0.9339}
|
186 |
+
Mean subset ('m0', 'm2', 'm3', 'm4') accuracies : 0.9339
|
187 |
+
Subset ('m1', 'm2', 'm3', 'm4') accuracies
|
188 |
+
{'m0': 0.6741}
|
189 |
+
Mean subset ('m1', 'm2', 'm3', 'm4') accuracies : 0.6741
|
190 |
+
Conditional accuracies for 0 modalities : 0.623735 +- 0.022596712150222225
|
191 |
+
Conditional accuracies for 1 modalities : 0.7451266666666667 +- 0.053787389682795415
|
192 |
+
Conditional accuracies for 2 modalities : 0.7885500000000001 +- 0.10576923702097885
|
193 |
+
Conditional accuracies for 3 modalities : 0.8038599999999999 +- 0.18841198051079447
|
194 |
+
Joint coherence : 0.11150000244379044
|
195 |
+
Joint likelihood : tensor(9869.5264)
|
196 |
+
Joint likelihood : tensor(9869.5264)
|
197 |
+
Joint likelihood from subset ['m0', 'm1', 'm2', 'm3', 'm4'] : tensor(9359.5586)
|
198 |
+
Joint likelihood from subset ['m0', 'm1', 'm2', 'm3', 'm4'] : tensor(9359.5586)
|