Upload model
Browse files- README.md +15 -83
- adapter_config.json +24 -0
- adapter_model.safetensors +3 -0
README.md
CHANGED
@@ -1,89 +1,21 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
---
|
|
|
6 |
|
7 |
-
# モデル概要
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# 使用方法
|
12 |
-
|
13 |
-
```python
|
14 |
-
import torch
|
15 |
-
from peft import PeftModel
|
16 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
17 |
-
|
18 |
-
# モデルの読み込み
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(
|
20 |
-
"meta-llama/Llama-2-7b-hf",
|
21 |
-
quantization_config=BitsAndBytesConfig(
|
22 |
-
load_in_4bit=True,
|
23 |
-
bnb_4bit_use_double_quant=True,
|
24 |
-
bnb_4bit_quant_type="nf4",
|
25 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
26 |
-
),
|
27 |
-
device_map={"":0}
|
28 |
-
)
|
29 |
-
|
30 |
-
# トークナイザーの読み込み
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
32 |
-
"asaoka/Llama-2-7b-hf-qlora-dolly15k-japanese"
|
33 |
-
)
|
34 |
-
|
35 |
-
# LoRAの読み込み
|
36 |
-
model = PeftModel.from_pretrained(
|
37 |
-
model,
|
38 |
-
"asaoka/Llama-2-7b-hf-qlora-dolly15k-japanese",
|
39 |
-
device_map={"":0}
|
40 |
-
)
|
41 |
-
model.eval()
|
42 |
-
|
43 |
-
# プロンプトの準備
|
44 |
-
prompt = "### Instruction: 富士山とは?\n\n### Response: "
|
45 |
-
|
46 |
-
# 推論の実行
|
47 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0")
|
48 |
-
with torch.no_grad():
|
49 |
-
outputs = model.generate(**inputs, max_new_tokens=100)
|
50 |
-
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
51 |
-
```
|
52 |
-
|
53 |
-
使用方法は,[「Google Colab で Llama-2-7B のQLoRA ファインチューニングを試す」](https://note.com/npaka/n/na7c631175111#f2af0e53-4ef3-4288-b152-6524f1b940a7)を参照しました.
|
54 |
-
|
55 |
-
# トレーニング方法
|
56 |
-
|
57 |
-
- インストラクションチューニング + QLoRA(4bitLoRA)
|
58 |
-
|
59 |
-
- トークナイザー:Llama-2-7b-hfのトークナイザーをそのまま使用
|
60 |
-
|
61 |
-
# JGLUEスコア
|
62 |
-
|
63 |
-
| タスク | Llama-2-7b-hf | This Model |
|
64 |
-
|:-|:-|:-|
|
65 |
-
| jcommonsenseqa-1.1-0.6(acc) | 0.7274 | ? |
|
66 |
-
|
67 |
-
[JGLUEスコア](https://aclanthology.org/2022.lrec-1.317/)は,Stability AI社の[lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness)を用いて
|
68 |
-
算出しました.JGLUEスコアの算出に用いたスクリプトを下記に示します.
|
69 |
-
|
70 |
-
```bash
|
71 |
-
!python main.py \
|
72 |
-
--model hf-causal-experimental \
|
73 |
-
--model_args pretrained=meta-llama/Llama-2-7b-hf \
|
74 |
-
--tasks jcommonsenseqa-1.1-0.6 \
|
75 |
-
--num_fewshot 3 \
|
76 |
-
--device cuda \
|
77 |
-
--output_path ./results.json
|
78 |
-
```
|
79 |
-
|
80 |
-
```bash
|
81 |
-
!python main.py \
|
82 |
-
--model hf-causal-experimental \
|
83 |
-
--model_args pretrained=meta-llama/Llama-2-7b-hf,peft=asaoka/Llama-2-7b-hf-qlora-dolly15k-japanese \
|
84 |
-
--tasks jcommonsenseqa-1.1-0.6 \
|
85 |
-
--num_fewshot 3 \
|
86 |
-
--device cuda \
|
87 |
-
--output_path ./results.json
|
88 |
-
```
|
89 |
|
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
|
|
|
|
3 |
---
|
4 |
+
## Training procedure
|
5 |
|
|
|
6 |
|
7 |
+
The following `bitsandbytes` quantization config was used during training:
|
8 |
+
- quant_method: bitsandbytes
|
9 |
+
- load_in_8bit: False
|
10 |
+
- load_in_4bit: True
|
11 |
+
- llm_int8_threshold: 6.0
|
12 |
+
- llm_int8_skip_modules: None
|
13 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
14 |
+
- llm_int8_has_fp16_weight: False
|
15 |
+
- bnb_4bit_quant_type: nf4
|
16 |
+
- bnb_4bit_use_double_quant: True
|
17 |
+
- bnb_4bit_compute_dtype: bfloat16
|
18 |
+
### Framework versions
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
- PEFT 0.5.0
|
adapter_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 16,
|
11 |
+
"lora_dropout": 0.1,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 16,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"lm_head",
|
18 |
+
"v_proj",
|
19 |
+
"o_proj",
|
20 |
+
"gate_proj",
|
21 |
+
"up_proj"
|
22 |
+
],
|
23 |
+
"task_type": "CAUSAL_LM"
|
24 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:648ea00d3edd16c72bcaf301635ee7e1c7a9a50fc5e58860fbb77166eabf929f
|
3 |
+
size 97764808
|