--- license: apache-2.0 base_model: argilla/zephyr-7b-spin-iter2-v0 tags: - generated_from_trainer model-index: - name: zephyr-7b-spin-iter3-v0 results: [] datasets: - argilla/10k_prompts_SPIN_iter3_zephyr_top - argilla/10k_prompts_SPIN_iter2_zephyr_top - DIBT/10k_prompts_ranked --- # zephyr-7b-spin-iter3-v0 > A model matching the results of SPIN with very little data (30x less), carefully curated by the amazing [Data Is Better Together community](https://huggingface.co./DIBT)

Built with Distilabel

This model is a fine-tuned version of [argilla/zephyr-7b-spin-iter2-v0](https://huggingface.co./argilla/zephyr-7b-spin-iter2-v0) on the [argilla/10k_prompts_SPIN_iter3_zephyr_top](https://huggingface.co./datasets/argilla/10k_prompts_SPIN_iter3_zephyr_top) and the [argilla/10k_prompts_SPIN_iter2_zephyr_top](https://huggingface.co./datasets/argilla/10k_prompts_SPIN_iter2_zephyr_top) dataset. Check [this repo](https://github.com/argilla-io/distilabel-spin-dibt) for full reproducible code using the original SPIN implementation and distilabel. If you want to contribute to high quality datasets like this, contribute to the [DIBT prompt collective initiative](https://huggingface.co./spaces/DIBT/prompt-collective-dashboard). ## MT-Bench results | Model | 1st Turn Score | 2nd Turn Score | Average Score | SPIN paper Score | |-------------------------|----------------|----------------|---------------|------------------| | zephyr-7b-sft-full | 6.6625 | 6.0250 | 6.34375 | 5.94 | | zephyr-7b-spin-iter0-v0 | 6.64375 | 6.1750 | 6.409375 | 6.46 | | zephyr-7b-spin-iter1-v0 | 6.90625 | 6.3000 | 6.603125 | 6.65 | | zephyr-7b-spin-iter2-v0 | **7.1375** | 6.3125 | 6.725000 | 6.78 | | zephyr-7b-spin-iter3-v0 | 7.09375 | **6.4500** | **6.771875** | - | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------------:|:------------------:|:---------------:|:---------------:|:----------:|:----------------:|:-----------:| | 0.2928 | 0.49 | 25 | 0.3951 | -2.6212 | -20.3268 | 0.9062 | 17.7056 | -700.5638 | -278.0876 | -2.8098 | -2.8090 | | 0.1487 | 0.97 | 50 | 0.1319 | -2.9077 | -29.1459 | 0.9375 | 26.2382 | -702.3276 | -278.1449 | -2.8218 | -2.8066 | | 0.006 | 1.46 | 75 | 0.1269 | -2.6037 | -29.1519 | 0.9583 | 26.5482 | -702.3289 | -278.0841 | -2.8175 | -2.8037 | | 0.0086 | 1.94 | 100 | 0.1099 | -2.9181 | -29.6970 | 0.9271 | 26.7789 | -702.4378 | -278.1470 | -2.8177 | -2.8051 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2