File size: 7,463 Bytes
d6d029a
 
7797fde
 
d6d029a
7797fde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e02333c
0213a41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7797fde
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
language:
- en
license: apache-2.0
tags:
- distilabel
- dpo
- rlaif
- rlhf
- merge
- mergekit
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
model-index:
- name: distilabeled-Marcoro14-7B-slerp-full
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.65
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.55
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.33
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 64.21
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.0
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.66
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
      name: Open LLM Leaderboard
---
# ⚗️ distilabeled Marcoro14 7B Slerp


<p align="center">
  <a href="https://github.com/argilla-io/distilabel">
    <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
  </a>
</p>


## Introduction

This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co./datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel).

The difference between this model and [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp)
is that this model has been fine-tuned for a whole epoch instead instead of 200 steps, so it has seen the whole dataset.

## Training details

As we did with [Notus](https://argilla.io/blog/notus7b/), we wanted a reproducible recipe to test the impact of data quality. 

And we're lucky to have so many amazing folks in the open community contributing reproducible, easy-to-use training scripts and recipes. This time, [Maxime Labonne](https://twitter.com/maximelabonne) had shared a [Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) to fine-tune OpenHermes with DPO and the original Intel's dataset, perfect! We just updated the base model to [mlabonne/Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp), and applied the same dataset recipe we used for [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction):

```python
from datasets import load_dataset

# Instead of this:
# dataset = load_dataset("Intel/orca_dpo_pairs", split="train")

# we did this
dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train")

dataset = dataset.filter(
    lambda r: 
        r["status"] != "tie" and 
        r["chosen_score"] >= 8 and 
        not r["in_gsm8k_train"]
)
```

## Benchmark results
For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`).

For running the benchmark we used another awesome contribution from Maxime: [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), check it out!

|          Model          |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|[argilla/distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp-full)|  45.17|  **76.59**|     64.68|   **48.15**|  **58.65**|
|[argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp)|   **45.4**|  76.47|     **65.46**|   47.19|  58.63|
|[Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp)       |  44.66|  76.24|     64.15|   45.64|  57.67|
|[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B)   |   44.64 |   73.35 |      55.96 |    42.21 |   54.04 |

### Training Hardware

We used 1 x A100 80GB in runpod for less than 2 hours.

## Acknowledgements

We'd like to thank the amazing open community and in particular:

* The Intel team for publishing a great open dataset and show how well it worked in the first place 
* Teknium and NousResearch for their awesome work and models.
* Maxime for sharing such great resources.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_argilla__distilabeled-Marcoro14-7B-slerp-full)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.40|
|AI2 Reasoning Challenge (25-Shot)|70.65|
|HellaSwag (10-Shot)              |87.55|
|MMLU (5-Shot)                    |65.33|
|TruthfulQA (0-shot)              |64.21|
|Winogrande (5-shot)              |82.00|
|GSM8k (5-shot)                   |70.66|