--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: andysalerno/mistral-sft-v3 model-index: - name: rainbowfish-v9-adapter results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: andysalerno/mistral-sft-v3 model_type: AutoModelForCausalLM load_in_8bit: true load_in_4bit: false strict: false datasets: - path: andysalerno/rainbowfish-v1 type: system_prompt: "" field_system: system field_instruction: input field_output: output format: "{instruction}" no_input_format: "{instruction}" dataset_prepared_path: last_run_prepared val_set_size: 0.005 output_dir: ./lora-out-rainbow9 adapter: lora lora_model_dir: sequence_len: 2048 sample_packing: false # was true eval_sample_packing: false pad_to_sequence_len: false padding_side: left lora_r: 64 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: axolotl wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 neftune_noise_alpha: 5 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false # early_stopping_patience: 3 local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 hub_strategy: "every_save" hub_model_id: andysalerno/rainbowfish-v9-adapter num_epochs: 4 warmup_steps: 100 eval_steps: 200 eval_table_size: eval_table_max_new_tokens: 128 # max_steps: 500 saves_per_epoch: 1 debug: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "<|im_start|>" eos_token: "<|im_end|>" unk_token: "" ```

# rainbowfish-v9-adapter This model is a fine-tuned version of [andysalerno/mistral-sft-v3](https://huggingface.co./andysalerno/mistral-sft-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6535 | 0.18 | 200 | 0.6840 | | 0.69 | 0.37 | 400 | 0.6711 | | 0.6649 | 0.55 | 600 | 0.6641 | | 0.6959 | 0.74 | 800 | 0.6590 | | 0.717 | 0.92 | 1000 | 0.6547 | | 0.5243 | 1.11 | 1200 | 0.6540 | | 0.6285 | 1.29 | 1400 | 0.6523 | | 0.6219 | 1.47 | 1600 | 0.6504 | | 0.6334 | 1.66 | 1800 | 0.6486 | | 0.6627 | 1.84 | 2000 | 0.6466 | | 0.6319 | 2.03 | 2200 | 0.6460 | | 0.6081 | 2.21 | 2400 | 0.6466 | | 0.5721 | 2.4 | 2600 | 0.6459 | | 0.5794 | 2.58 | 2800 | 0.6447 | | 0.721 | 2.76 | 3000 | 0.6443 | | 0.5825 | 2.95 | 3200 | 0.6436 | | 0.5921 | 3.13 | 3400 | 0.6457 | | 0.5224 | 3.32 | 3600 | 0.6461 | | 0.5466 | 3.5 | 3800 | 0.6456 | | 0.5972 | 3.69 | 4000 | 0.6460 | | 0.5999 | 3.87 | 4200 | 0.6456 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0