File size: 17,304 Bytes
1cff332 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import io
import sys
import cv2
import json
import time
import pathlib
import argparse
import tempfile
import itertools
import contextlib
import torch
import torchvision
import numpy as np
import onnxruntime as ort
from tqdm import tqdm
from loguru import logger
from tabulate import tabulate
from collections import defaultdict
from pycocotools.cocoeval import COCOeval
CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))
from coco import COCO_CLASSES
class COCOEvaluator:
"""
COCO AP Evaluation class. All the data in the val2017 dataset are processed
and evaluated by COCO API.
"""
def __init__(
self,
dataloader,
img_size: int,
confthre: float,
nmsthre: float,
num_classes: int,
testdev: bool = False,
per_class_AP: bool = False,
per_class_AR: bool = False,
):
"""
Args:
dataloader (Dataloader): evaluate dataloader.
img_size: image size after preprocess. images are resized
to squares whose shape is (img_size, img_size).
confthre: confidence threshold ranging from 0 to 1, which
is defined in the config file.
nmsthre: IoU threshold of non-max supression ranging from 0 to 1.
num_classes: number of all classes of interest.
testdev: whether run on the testdev set of COCO.
per_class_AP: Show per class AP during evalution or not. Default to False.
per_class_AR: Show per class AR during evalution or not. Default to False.
"""
self.dataloader = dataloader
self.img_size = img_size
self.confthre = confthre
self.nmsthre = nmsthre
self.num_classes = num_classes
self.testdev = testdev
self.per_class_AP = per_class_AP
self.per_class_AR = per_class_AR
def evaluate(self, ort_sess, return_outputs=False):
"""
COCO average precision (AP) Evaluation. Iterate inference on the test dataset
and the results are evaluated by COCO API.
NOTE: This function will change training mode to False, please save states if needed.
Args:
ort_sess (onnxruntime.InferenceSession): onnxruntime session to evaluate.
return_outputs (bool): flag indicates whether return image-wise result or not
Returns:
eval_results (tuple): summary of metrics for evaluation
output_data (defaultdict): image-wise result
"""
data_list = []
output_data = defaultdict()
inference_time = 0
nms_time = 0
n_samples = max(len(self.dataloader) - 1, 1)
input_name = ort_sess.get_inputs()[0].name
for cur_iter, (imgs, _, info_imgs, ids) in enumerate(tqdm(self.dataloader)):
# with torch.no_grad():
# skip the last iters since batchsize might be not enough for batch inference
is_time_record = cur_iter < len(self.dataloader) - 1
if is_time_record:
start = time.time()
outputs = ort_sess.run(None, {input_name: imgs.numpy()})
outputs = [torch.Tensor(out) for out in outputs]
outputs = head_postprocess(outputs)
if is_time_record:
infer_end = time.time()
inference_time += infer_end - start
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
if is_time_record:
nms_end = time.time()
nms_time += nms_end - infer_end
data_list_elem, image_wise_data = self.convert_to_coco_format(
outputs, info_imgs, ids, return_outputs=True)
data_list.extend(data_list_elem)
output_data.update(image_wise_data)
statistics = [inference_time, nms_time, n_samples]
eval_results = self.evaluate_prediction(data_list, statistics)
if return_outputs:
return eval_results, output_data
return eval_results
def convert_to_coco_format(self, outputs, info_imgs, ids, return_outputs=False):
data_list = []
image_wise_data = defaultdict(dict)
for (output, img_h, img_w, img_id) in zip(
outputs, info_imgs[0], info_imgs[1], ids
):
if output is None:
continue
output = output.cpu()
bboxes = output[:, 0:4]
# preprocessing: resize
scale = min(
self.img_size[0] / float(img_h), self.img_size[1] / float(img_w)
)
bboxes /= scale
cls = output[:, 6]
scores = output[:, 4] * output[:, 5]
image_wise_data.update({
int(img_id): {
"bboxes": [box.numpy().tolist() for box in bboxes],
"scores": [score.numpy().item() for score in scores],
"categories": [
self.dataloader.dataset.class_ids[int(cls[ind])]
for ind in range(bboxes.shape[0])
],
}
})
bboxes = xyxy2xywh(bboxes)
for ind in range(bboxes.shape[0]):
label = self.dataloader.dataset.class_ids[int(cls[ind])]
pred_data = {
"image_id": int(img_id),
"category_id": label,
"bbox": bboxes[ind].numpy().tolist(),
"score": scores[ind].numpy().item(),
"segmentation": [],
} # COCO json format
data_list.append(pred_data)
if return_outputs:
return data_list, image_wise_data
return data_list
def evaluate_prediction(self, data_dict, statistics):
# if not is_main_process():
# return 0, 0, None
logger.info("Evaluate in main process...")
annType = ["segm", "bbox", "keypoints"]
inference_time = statistics[0]
nms_time = statistics[1]
n_samples = statistics[2]
a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size)
a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size)
time_info = ", ".join(
[
"Average {} time: {:.2f} ms".format(k, v)
for k, v in zip(
["forward", "NMS", "inference"],
[a_infer_time, a_nms_time, (a_infer_time + a_nms_time)],
)
]
)
info = time_info + "\n"
# Evaluate the Dt (detection) json comparing with the ground truth
if len(data_dict) > 0:
cocoGt = self.dataloader.dataset.coco
if self.testdev:
json.dump(data_dict, open("./yolox_testdev_2017.json", "w"))
cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json")
else:
_, tmp = tempfile.mkstemp()
json.dump(data_dict, open(tmp, "w"))
cocoDt = cocoGt.loadRes(tmp)
logger.info("Use standard COCOeval.")
cocoEval = COCOeval(cocoGt, cocoDt, annType[1])
cocoEval.evaluate()
cocoEval.accumulate()
redirect_string = io.StringIO()
with contextlib.redirect_stdout(redirect_string):
cocoEval.summarize()
info += redirect_string.getvalue()
cat_ids = list(cocoGt.cats.keys())
cat_names = [cocoGt.cats[catId]['name'] for catId in sorted(cat_ids)]
if self.per_class_AP:
AP_table = per_class_AP_table(cocoEval, class_names=cat_names)
info += "per class AP:\n" + AP_table + "\n"
if self.per_class_AR:
AR_table = per_class_AR_table(cocoEval, class_names=cat_names)
info += "per class AR:\n" + AR_table + "\n"
return cocoEval.stats[0], cocoEval.stats[1], info
else:
return 0, 0, info
class ValTransform:
"""
Defines the transformations that should be applied to test PIL image
for input into the network
"""
def __init__(self, swap=(2, 0, 1), legacy=False):
self.swap = swap
self.legacy = legacy
# assume input is cv2 img for now
def __call__(self, img, res, input_size):
img, _ = preproc(img, input_size, self.swap)
if self.legacy:
img = img[::-1, :, :].copy()
img /= 255.0
img -= np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1)
img /= np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1)
return img, np.zeros((1, 5))
def preproc(img, input_size, swap=(2, 0, 1)):
"""Preprocess function for preparing input for the network"""
if len(img.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
else:
padded_img = np.ones(input_size, dtype=np.uint8) * 114
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.uint8)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
padded_img = padded_img.transpose(swap)
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
return padded_img, r
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45, class_agnostic=False):
"""Post-processing part after the prediction heads with NMS"""
box_corner = prediction.new(prediction.shape)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for i, image_pred in enumerate(prediction):
# If none are remaining => process next image
if not image_pred.size(0):
continue
# Get score and class with the highest confidence
class_conf, class_pred = torch.max(image_pred[:, 5: 5 + num_classes], 1, keepdim=True)
conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= conf_thre).squeeze()
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
detections = torch.cat((image_pred[:, :5], class_conf, class_pred.float()), 1)
detections = detections[conf_mask]
if not detections.size(0):
continue
if class_agnostic:
nms_out_index = torchvision.ops.nms(
detections[:, :4],
detections[:, 4] * detections[:, 5],
nms_thre,
)
else:
nms_out_index = torchvision.ops.batched_nms(
detections[:, :4],
detections[:, 4] * detections[:, 5],
detections[:, 6],
nms_thre,
)
detections = detections[nms_out_index]
if output[i] is None:
output[i] = detections
else:
output[i] = torch.cat((output[i], detections))
return output
def head_postprocess(outputs, strides=[8, 16, 32]):
"""Decode outputs from predictions of the detection heads"""
hw = [x.shape[-2:] for x in outputs]
# [batch, n_anchors_all, 85]
outputs = torch.cat([x.flatten(start_dim=2) for x in outputs], dim=2).permute(0, 2, 1)
outputs[..., 4:] = outputs[..., 4:].sigmoid()
return decode_outputs(outputs, outputs[0].type(), hw, strides)
def decode_outputs(outputs, dtype, ori_hw, ori_strides):
grids = []
strides = []
for (hsize, wsize), stride in zip(ori_hw, ori_strides):
yv, xv = meshgrid([torch.arange(hsize), torch.arange(wsize)])
grid = torch.stack((xv, yv), 2).view(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
strides.append(torch.full((*shape, 1), stride))
grids = torch.cat(grids, dim=1).type(dtype)
strides = torch.cat(strides, dim=1).type(dtype)
outputs[..., :2] = (outputs[..., :2] + grids) * strides
outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
return outputs
def xyxy2xywh(bboxes):
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
return bboxes
def meshgrid(*tensors):
_TORCH_VER = [int(x) for x in torch.__version__.split(".")[:2]]
if _TORCH_VER >= [1, 10]:
return torch.meshgrid(*tensors, indexing="ij")
else:
return torch.meshgrid(*tensors)
def per_class_AR_table(coco_eval, class_names=COCO_CLASSES, headers=["class", "AR"], colums=6):
"""Format the recall of each class"""
per_class_AR = {}
recalls = coco_eval.eval["recall"]
# dimension of recalls: [TxKxAxM]
# recall has dims (iou, cls, area range, max dets)
assert len(class_names) == recalls.shape[1]
for idx, name in enumerate(class_names):
recall = recalls[:, idx, 0, -1]
recall = recall[recall > -1]
ar = np.mean(recall) if recall.size else float("nan")
per_class_AR[name] = float(ar * 100)
num_cols = min(colums, len(per_class_AR) * len(headers))
result_pair = [x for pair in per_class_AR.items() for x in pair]
row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)])
table_headers = headers * (num_cols // len(headers))
table = tabulate(
row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left",
)
return table
def per_class_AP_table(coco_eval, class_names=COCO_CLASSES, headers=["class", "AP"], colums=6):
"""Format the precision of each class"""
per_class_AP = {}
precisions = coco_eval.eval["precision"]
# dimension of precisions: [TxRxKxAxM]
# precision has dims (iou, recall, cls, area range, max dets)
assert len(class_names) == precisions.shape[2]
for idx, name in enumerate(class_names):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
per_class_AP[name] = float(ap * 100)
num_cols = min(colums, len(per_class_AP) * len(headers))
result_pair = [x for pair in per_class_AP.items() for x in pair]
row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)])
table_headers = headers * (num_cols // len(headers))
table = tabulate(
row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left",
)
return table
def get_eval_loader(batch_size, test_size=(640, 640), data_dir='data/COCO', data_num_workers=0, testdev=False, legacy=False):
from coco import COCODataset
valdataset = COCODataset(
data_dir=data_dir,
json_file='instances_val2017.json' if not testdev else 'instances_test2017.json',
name="val2017" if not testdev else "test2017",
img_size=test_size,
preproc=ValTransform(legacy=legacy),
)
sampler = torch.utils.data.SequentialSampler(valdataset)
dataloader_kwargs = {
"num_workers": data_num_workers,
"pin_memory": True,
"sampler": sampler,
"batch_size": batch_size
}
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)
return val_loader
def make_parser():
parser = argparse.ArgumentParser("onnxruntime inference sample")
parser.add_argument(
"-m",
"--model",
type=str,
default="yolox-s-int8.onnx",
help="Input your onnx model.",
)
parser.add_argument(
"-b",
"--batch_size",
type=int,
default=1,
help="Batch size for inference..",
)
parser.add_argument(
"--input_shape",
type=str,
default="640,640",
help="Specify an input shape for inference.",
)
parser.add_argument(
"--ipu",
action="store_true",
help="Use IPU for inference.",
)
parser.add_argument(
"--provider_config",
type=str,
default="vaip_config.json",
help="Path of the config file for setting provider_options.",
)
return parser
if __name__ == '__main__':
args = make_parser().parse_args()
input_shape = tuple(map(int, args.input_shape.split(',')))
if args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": args.provider_config}]
else:
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
provider_options = None
session = ort.InferenceSession(args.model, providers=providers, provider_options=provider_options)
val_loader = get_eval_loader(args.batch_size)
evaluator = COCOEvaluator(dataloader=val_loader, img_size=input_shape, confthre=0.01, nmsthre=0.65, num_classes=80, testdev=False)
*_, summary = evaluator.evaluate(session)
logger.info("\n" + summary)
|