File size: 1,665 Bytes
2071132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import onnxruntime
import cv2
import numpy as np
import sys
import pathlib
CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))
from data.data_tiling import tiling_inference
import argparse
def main(args):
if args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": args.provider_config}]
else:
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
provider_options = None
onnx_file_name = args.onnx_path
image_path = args.image_path
output_path = args.output_path
ort_session = onnxruntime.InferenceSession(onnx_file_name, providers=providers, provider_options=provider_options)
lr = cv2.imread(image_path)[np.newaxis,:,:,:].transpose((0,3,1,2)).astype(np.float32)
sr = tiling_inference(ort_session, lr, 8, (56, 56))
sr = np.clip(sr, 0, 255)
sr = sr.squeeze().transpose((1,2,0)).astype(np.uint8)
cv2.imwrite(output_path, sr)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='EDSR and MDSR')
parser.add_argument('--onnx_path', type=str, default='SESR_int8.onnx',
help='onnx path')
parser.add_argument('--image_path', default='test_data/test.png',
help='path of your image')
parser.add_argument('--output_path', default='test_data/sr.png',
help='path of your image')
parser.add_argument('--ipu', action='store_true',
help='use ipu')
parser.add_argument('--provider_config', type=str, default=None,
help='provider config path')
args = parser.parse_args()
main(args)
|