|
import random |
|
|
|
import numpy as np |
|
import skimage.color as sc |
|
|
|
import torch |
|
|
|
def set_channel(*args, n_channels=3): |
|
def _set_channel(img): |
|
if img.ndim == 2: |
|
img = np.expand_dims(img, axis=2) |
|
|
|
c = img.shape[2] |
|
if n_channels == 1 and c == 3: |
|
img = np.expand_dims(sc.rgb2ycbcr(img)[:, :, 0], 2) |
|
elif n_channels == 3 and c == 1: |
|
img = np.concatenate([img] * n_channels, 2) |
|
|
|
return img |
|
|
|
return [_set_channel(a) for a in args] |
|
|
|
def np2Tensor(*args, rgb_range=255): |
|
def _np2Tensor(img): |
|
np_transpose = np.ascontiguousarray(img.transpose((2, 0, 1))) |
|
tensor = torch.from_numpy(np_transpose).float() |
|
tensor.mul_(rgb_range / 255) |
|
|
|
return tensor |
|
|
|
return [_np2Tensor(a) for a in args] |
|
|
|
|
|
|
|
|