|
import onnxruntime as rt |
|
import numpy as np |
|
import json |
|
import torch |
|
import cv2 |
|
import os |
|
from torch.utils.data.dataset import Dataset |
|
import random |
|
import math |
|
import argparse |
|
|
|
|
|
MODEL_DIR = './movenet_int8.onnx' |
|
IMG_SIZE = 192 |
|
FEATURE_MAP_SIZE = 48 |
|
CENTER_WEIGHT_ORIGIN_PATH = './center_weight_origin.npy' |
|
DATASET_PATH = 'your_dataset_path' |
|
EVAL_LABLE_PATH = os.path.join(DATASET_PATH, "val2017.json") |
|
EVAL_IMG_PATH = os.path.join(DATASET_PATH, 'imgs') |
|
|
|
|
|
def getDist(pre, labels): |
|
""" |
|
Calculate the Euclidean distance between predicted and labeled keypoints. |
|
|
|
Args: |
|
pre: Predicted keypoints [batchsize, 14] |
|
labels: Labeled keypoints [batchsize, 14] |
|
|
|
Returns: |
|
dist: Distance between keypoints [batchsize, 7] |
|
""" |
|
pre = pre.reshape([-1, 17, 2]) |
|
labels = labels.reshape([-1, 17, 2]) |
|
res = np.power(pre[:,:,0]-labels[:,:,0],2)+np.power(pre[:,:,1]-labels[:,:,1],2) |
|
return res |
|
|
|
|
|
def getAccRight(dist, th = 5/IMG_SIZE): |
|
""" |
|
Compute accuracy for each keypoint based on a threshold. |
|
|
|
Args: |
|
dist: Distance between keypoints [batchsize, 7] |
|
th: Threshold for accuracy computation |
|
|
|
Returns: |
|
res: Accuracy per keypoint [7,] representing the count of correct predictions |
|
""" |
|
res = np.zeros(dist.shape[1], dtype=np.int64) |
|
for i in range(dist.shape[1]): |
|
res[i] = sum(dist[:,i]<th) |
|
return res |
|
|
|
def myAcc(output, target): |
|
''' |
|
Compute accuracy across keypoints. |
|
|
|
Args: |
|
output: Predicted keypoints |
|
target: Labeled keypoints |
|
|
|
Returns: |
|
cate_acc: Categorical accuracy [7,] representing the count of correct predictions per keypoint |
|
''' |
|
|
|
|
|
|
|
|
|
dist = getDist(output, target) |
|
|
|
cate_acc = getAccRight(dist) |
|
return cate_acc |
|
|
|
|
|
_range_weight_x = np.array([[x for x in range(FEATURE_MAP_SIZE)] for _ in range(FEATURE_MAP_SIZE)]) |
|
_range_weight_y = _range_weight_x.T |
|
_center_weight = np.load(CENTER_WEIGHT_ORIGIN_PATH).reshape(FEATURE_MAP_SIZE,FEATURE_MAP_SIZE) |
|
|
|
def maxPoint(heatmap, center=True): |
|
""" |
|
Find the coordinates of maximum values in a heatmap. |
|
|
|
Args: |
|
heatmap: Input heatmap data |
|
center: Flag to indicate whether to consider center-weighted points |
|
|
|
Returns: |
|
x, y: Coordinates of maximum values in the heatmap |
|
""" |
|
if len(heatmap.shape) == 3: |
|
batch_size,h,w = heatmap.shape |
|
c = 1 |
|
elif len(heatmap.shape) == 4: |
|
|
|
batch_size,c,h,w = heatmap.shape |
|
if center: |
|
heatmap = heatmap*_center_weight |
|
heatmap = heatmap.reshape((batch_size,c, -1)) |
|
max_id = np.argmax(heatmap,2) |
|
y = max_id//w |
|
x = max_id%w |
|
|
|
return x,y |
|
|
|
def movenetDecode(data, kps_mask=None,mode='output', num_joints = 17, |
|
img_size=192, hm_th=0.1): |
|
|
|
''' |
|
Decode MoveNet output data to predicted keypoints. |
|
|
|
Args: |
|
data: MoveNet output data |
|
kps_mask: Keypoints mask |
|
mode: Mode of decoding ('output' or 'label') |
|
num_joints: Number of joints/keypoints |
|
img_size: Image size |
|
hm_th: Threshold for heatmap processing |
|
|
|
Returns: |
|
res: Decoded keypoints |
|
''' |
|
|
|
|
|
|
|
if mode == 'output': |
|
batch_size = data[0].shape[0] |
|
heatmaps = data[0] |
|
heatmaps[heatmaps < hm_th] = 0 |
|
centers = data[1] |
|
regs = data[2] |
|
offsets = data[3] |
|
cx,cy = maxPoint(centers) |
|
dim0 = np.arange(batch_size,dtype=np.int32).reshape(batch_size,1) |
|
dim1 = np.zeros((batch_size,1),dtype=np.int32) |
|
res = [] |
|
for n in range(num_joints): |
|
reg_x_origin = (regs[dim0,dim1+n*2,cy,cx]+0.5).astype(np.int32) |
|
reg_y_origin = (regs[dim0,dim1+n*2+1,cy,cx]+0.5).astype(np.int32) |
|
reg_x = reg_x_origin+cx |
|
reg_y = reg_y_origin+cy |
|
|
|
reg_x = np.reshape(reg_x, (reg_x.shape[0],1,1)) |
|
reg_y = np.reshape(reg_y, (reg_y.shape[0],1,1)) |
|
reg_x = reg_x.repeat(FEATURE_MAP_SIZE,1).repeat(FEATURE_MAP_SIZE,2) |
|
reg_y = reg_y.repeat(FEATURE_MAP_SIZE,1).repeat(FEATURE_MAP_SIZE,2) |
|
range_weight_x = np.reshape(_range_weight_x,(1,FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)).repeat(reg_x.shape[0],0) |
|
range_weight_y = np.reshape(_range_weight_y,(1,FEATURE_MAP_SIZE,FEATURE_MAP_SIZE)).repeat(reg_x.shape[0],0) |
|
tmp_reg_x = (range_weight_x-reg_x)**2 |
|
tmp_reg_y = (range_weight_y-reg_y)**2 |
|
tmp_reg = (tmp_reg_x+tmp_reg_y)**0.5+1.8 |
|
tmp_reg = heatmaps[:,n,...]/tmp_reg |
|
tmp_reg = tmp_reg[:,np.newaxis,:,:] |
|
reg_x,reg_y = maxPoint(tmp_reg, center=False) |
|
reg_x[reg_x>47] = 47 |
|
reg_x[reg_x<0] = 0 |
|
reg_y[reg_y>47] = 47 |
|
reg_y[reg_y<0] = 0 |
|
score = heatmaps[dim0,dim1+n,reg_y,reg_x] |
|
offset_x = offsets[dim0,dim1+n*2,reg_y,reg_x] |
|
offset_y = offsets[dim0,dim1+n*2+1,reg_y,reg_x] |
|
res_x = (reg_x+offset_x)/(img_size//4) |
|
res_y = (reg_y+offset_y)/(img_size//4) |
|
res_x[score<hm_th] = -1 |
|
res_y[score<hm_th] = -1 |
|
res.extend([res_x, res_y]) |
|
res = np.concatenate(res,axis=1) |
|
elif mode == 'label': |
|
kps_mask = kps_mask.detach().cpu().numpy() |
|
data = data.detach().cpu().numpy() |
|
batch_size = data.shape[0] |
|
heatmaps = data[:,:17,:,:] |
|
centers = data[:,17:18,:,:] |
|
regs = data[:,18:52,:,:] |
|
offsets = data[:,52:,:,:] |
|
cx,cy = maxPoint(centers) |
|
dim0 = np.arange(batch_size,dtype=np.int32).reshape(batch_size,1) |
|
dim1 = np.zeros((batch_size,1),dtype=np.int32) |
|
res = [] |
|
for n in range(num_joints): |
|
reg_x_origin = (regs[dim0,dim1+n*2,cy,cx]+0.5).astype(np.int32) |
|
reg_y_origin = (regs[dim0,dim1+n*2+1,cy,cx]+0.5).astype(np.int32) |
|
reg_x = reg_x_origin+cx |
|
reg_y = reg_y_origin+cy |
|
reg_x[reg_x>47] = 47 |
|
reg_x[reg_x<0] = 0 |
|
reg_y[reg_y>47] = 47 |
|
reg_y[reg_y<0] = 0 |
|
offset_x = offsets[dim0,dim1+n*2,reg_y,reg_x] |
|
offset_y = offsets[dim0,dim1+n*2+1,reg_y,reg_x] |
|
res_x = (reg_x+offset_x)/(img_size//4) |
|
res_y = (reg_y+offset_y)/(img_size//4) |
|
res_x[kps_mask[:,n]==0] = -1 |
|
res_y[kps_mask[:,n]==0] = -1 |
|
res.extend([res_x, res_y]) |
|
res = np.concatenate(res,axis=1) |
|
return res |
|
|
|
def label2heatmap(keypoints, other_keypoints, img_size): |
|
''' |
|
Convert labeled keypoints to heatmaps for keypoints. |
|
|
|
Args: |
|
keypoints: Target person's keypoints |
|
other_keypoints: Other people's keypoints |
|
img_size: Size of the image |
|
|
|
Returns: |
|
heatmaps: Heatmaps for keypoints |
|
sigma: Value used for heatmap generation |
|
''' |
|
|
|
|
|
heatmaps = [] |
|
keypoints_range = np.reshape(keypoints,(-1,3)) |
|
keypoints_range = keypoints_range[keypoints_range[:,2]>0] |
|
min_x = np.min(keypoints_range[:,0]) |
|
min_y = np.min(keypoints_range[:,1]) |
|
max_x = np.max(keypoints_range[:,0]) |
|
max_y = np.max(keypoints_range[:,1]) |
|
area = (max_y-min_y)*(max_x-min_x) |
|
sigma = 3 |
|
if area < 0.16: |
|
sigma = 3 |
|
elif area < 0.3: |
|
sigma = 5 |
|
else: |
|
sigma = 7 |
|
for i in range(0,len(keypoints),3): |
|
if keypoints[i+2]==0: |
|
heatmaps.append(np.zeros((img_size//4, img_size//4))) |
|
continue |
|
x = int(keypoints[i]*img_size//4) |
|
y = int(keypoints[i+1]*img_size//4) |
|
if x==img_size//4:x=(img_size//4-1) |
|
if y==img_size//4:y=(img_size//4-1) |
|
if x>img_size//4 or x<0:x=-1 |
|
if y>img_size//4 or y<0:y=-1 |
|
heatmap = generate_heatmap(x, y, other_keypoints[i//3], (img_size//4, img_size//4),sigma) |
|
heatmaps.append(heatmap) |
|
heatmaps = np.array(heatmaps, dtype=np.float32) |
|
return heatmaps,sigma |
|
|
|
def generate_heatmap(x, y, other_keypoints, size, sigma): |
|
''' |
|
Generate a heatmap for a specific keypoint. |
|
|
|
Args: |
|
x, y: Absolute position of the keypoint |
|
other_keypoints: Position of other keypoints |
|
size: Size of the heatmap |
|
sigma: Value used for heatmap generation |
|
|
|
Returns: |
|
heatmap: Generated heatmap for the keypoint |
|
''' |
|
|
|
|
|
sigma+=6 |
|
heatmap = np.zeros(size) |
|
if x<0 or y<0 or x>=size[0] or y>=size[1]: |
|
return heatmap |
|
tops = [[x,y]] |
|
if len(other_keypoints)>0: |
|
|
|
for i in range(len(other_keypoints)): |
|
x = int(other_keypoints[i][0]*size[0]) |
|
y = int(other_keypoints[i][1]*size[1]) |
|
if x==size[0]:x=(size[0]-1) |
|
if y==size[1]:y=(size[1]-1) |
|
if x>size[0] or x<0 or y>size[1] or y<0: continue |
|
tops.append([x,y]) |
|
for top in tops: |
|
|
|
x,y = top |
|
x0 = max(0,x-sigma//2) |
|
x1 = min(size[0],x+sigma//2) |
|
y0 = max(0,y-sigma//2) |
|
y1 = min(size[1],y+sigma//2) |
|
for map_y in range(y0, y1): |
|
for map_x in range(x0, x1): |
|
d2 = ((map_x - x) ** 2 + (map_y - y) ** 2)**0.5 |
|
if d2<=sigma//2: |
|
heatmap[map_y, map_x] += math.exp(-d2/(sigma//2)*3) |
|
if heatmap[map_y, map_x] > 1: |
|
heatmap[map_y, map_x] = 1 |
|
|
|
return heatmap |
|
|
|
def label2center(cx, cy, other_centers, img_size, sigma): |
|
''' |
|
Convert labeled keypoints to a center heatmap. |
|
|
|
Args: |
|
cx, cy: Center coordinates |
|
other_centers: Other people's centers |
|
img_size: Size of the image |
|
sigma: Value used for heatmap generation |
|
|
|
Returns: |
|
heatmaps: Heatmap representing the center |
|
''' |
|
heatmaps = [] |
|
heatmap = generate_heatmap(cx, cy, other_centers, (img_size//4, img_size//4),sigma+2) |
|
heatmaps.append(heatmap) |
|
heatmaps = np.array(heatmaps, dtype=np.float32) |
|
return heatmaps |
|
|
|
def label2reg(keypoints, cx, cy, img_size): |
|
''' |
|
Convert labeled keypoints to regression maps. |
|
|
|
Args: |
|
keypoints: Labeled keypoints |
|
cx, cy: Center coordinates |
|
img_size: Size of the image |
|
|
|
Returns: |
|
heatmaps: Regression maps for keypoints |
|
''' |
|
|
|
heatmaps = np.zeros((len(keypoints)//3*2, img_size//4, img_size//4), dtype=np.float32) |
|
for i in range(len(keypoints)//3): |
|
if keypoints[i*3+2]==0: |
|
continue |
|
x = keypoints[i*3]*img_size//4 |
|
y = keypoints[i*3+1]*img_size//4 |
|
if x==img_size//4:x=(img_size//4-1) |
|
if y==img_size//4:y=(img_size//4-1) |
|
if x>img_size//4 or x<0 or y>img_size//4 or y<0: |
|
continue |
|
reg_x = x-cx |
|
reg_y = y-cy |
|
for j in range(cy-2,cy+3): |
|
if j<0 or j>img_size//4-1: |
|
continue |
|
for k in range(cx-2,cx+3): |
|
if k<0 or k>img_size//4-1: |
|
continue |
|
if cx<img_size//4/2-1: |
|
heatmaps[i*2][j][k] = reg_x-(cx-k) |
|
else: |
|
heatmaps[i*2][j][k] = reg_x+(cx-k) |
|
if cy<img_size//4/2-1: |
|
heatmaps[i*2+1][j][k] = reg_y-(cy-j) |
|
else: |
|
heatmaps[i*2+1][j][k] = reg_y+(cy-j) |
|
return heatmaps |
|
|
|
def label2offset(keypoints, cx, cy, regs, img_size): |
|
''' |
|
Convert labeled keypoints to offset maps. |
|
|
|
Args: |
|
keypoints: Labeled keypoints |
|
cx, cy: Center coordinates |
|
regs: Regression maps |
|
img_size: Size of the image |
|
|
|
Returns: |
|
heatmaps: Offset maps for keypoints |
|
''' |
|
heatmaps = np.zeros((len(keypoints)//3*2, img_size//4, img_size//4), dtype=np.float32) |
|
for i in range(len(keypoints)//3): |
|
if keypoints[i*3+2]==0: |
|
continue |
|
large_x = int(keypoints[i*3]*img_size) |
|
large_y = int(keypoints[i*3+1]*img_size) |
|
small_x = int(regs[i*2,cy,cx]+cx) |
|
small_y = int(regs[i*2+1,cy,cx]+cy) |
|
offset_x = large_x/4-small_x |
|
offset_y = large_y/4-small_y |
|
if small_x==img_size//4:small_x=(img_size//4-1) |
|
if small_y==img_size//4:small_y=(img_size//4-1) |
|
if small_x>img_size//4 or small_x<0 or small_y>img_size//4 or small_y<0: |
|
continue |
|
heatmaps[i*2][small_y][small_x] = offset_x |
|
heatmaps[i*2+1][small_y][small_x] = offset_y |
|
return heatmaps |
|
|
|
class TensorDataset(Dataset): |
|
''' |
|
Custom Dataset class for handling data loading and preprocessing |
|
''' |
|
|
|
def __init__(self, data_labels, img_dir, img_size, data_aug=None): |
|
self.data_labels = data_labels |
|
self.img_dir = img_dir |
|
self.data_aug = data_aug |
|
self.img_size = img_size |
|
self.interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, |
|
cv2.INTER_NEAREST, cv2.INTER_LANCZOS4] |
|
|
|
|
|
def __getitem__(self, index): |
|
item = self.data_labels[index] |
|
""" |
|
item = { |
|
"img_name":save_name, |
|
"keypoints":save_keypoints, |
|
"center":save_center, |
|
"other_centers":other_centers, |
|
"other_keypoints":other_keypoints, |
|
} |
|
""" |
|
|
|
img_path = os.path.join(self.img_dir, item["img_name"]) |
|
img = cv2.imread(img_path, cv2.IMREAD_COLOR) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = cv2.resize(img, (self.img_size, self.img_size), |
|
interpolation=random.choice(self.interp_methods)) |
|
|
|
if self.data_aug is not None: |
|
img, item = self.data_aug(img, item) |
|
img = img.astype(np.float32) |
|
img = np.transpose(img,axes=[2,0,1]) |
|
keypoints = item["keypoints"] |
|
center = item['center'] |
|
other_centers = item["other_centers"] |
|
other_keypoints = item["other_keypoints"] |
|
kps_mask = np.ones(len(keypoints)//3) |
|
for i in range(len(keypoints)//3): |
|
if keypoints[i*3+2]==0: |
|
kps_mask[i] = 0 |
|
heatmaps,sigma = label2heatmap(keypoints, other_keypoints, self.img_size) |
|
cx = min(max(0,int(center[0]*self.img_size//4)),self.img_size//4-1) |
|
cy = min(max(0,int(center[1]*self.img_size//4)),self.img_size//4-1) |
|
centers = label2center(cx, cy, other_centers, self.img_size, sigma) |
|
regs = label2reg(keypoints, cx, cy, self.img_size) |
|
offsets = label2offset(keypoints, cx, cy, regs, self.img_size) |
|
labels = np.concatenate([heatmaps,centers,regs,offsets],axis=0) |
|
img = img / 127.5 - 1.0 |
|
return img, labels, kps_mask, img_path |
|
|
|
def __len__(self): |
|
return len(self.data_labels) |
|
|
|
|
|
def getDataLoader(mode, input_data): |
|
''' |
|
Function to get data loader based on mode (e.g., evaluation). |
|
|
|
Args: |
|
mode: Mode of data loader (e.g., 'eval') |
|
input_data: Input data |
|
|
|
Returns: |
|
data_loader: DataLoader for specified mode |
|
''' |
|
|
|
if mode=="eval": |
|
val_loader = torch.utils.data.DataLoader( |
|
TensorDataset(input_data[0], |
|
EVAL_IMG_PATH, |
|
IMG_SIZE, |
|
), |
|
batch_size=1, |
|
shuffle=False, |
|
num_workers=0, |
|
pin_memory=False) |
|
return val_loader |
|
|
|
|
|
class Data(): |
|
''' |
|
Class for managing data and obtaining evaluation data loader. |
|
''' |
|
def __init__(self): |
|
pass |
|
|
|
def getEvalDataloader(self): |
|
with open(EVAL_LABLE_PATH, 'r') as f: |
|
data_label_list = json.loads(f.readlines()[0]) |
|
print("[INFO] Total images: ", len(data_label_list)) |
|
input_data = [data_label_list] |
|
data_loader = getDataLoader("eval", |
|
input_data) |
|
return data_loader |
|
|
|
|
|
def make_parser(): |
|
''' |
|
Create parser for MoveNet ONNX runtime inference. |
|
|
|
Returns: |
|
parser: Argument parser for MoveNet inference |
|
''' |
|
parser = argparse.ArgumentParser("movenet onnxruntime inference") |
|
parser.add_argument( |
|
"--ipu", |
|
action="store_true", |
|
help="Use IPU for inference.", |
|
) |
|
parser.add_argument( |
|
"--provider_config", |
|
type=str, |
|
default="vaip_config.json", |
|
help="Path of the config file for seting provider_options.", |
|
) |
|
return parser.parse_args() |
|
|
|
if __name__ == '__main__': |
|
|
|
args = make_parser() |
|
|
|
if args.ipu: |
|
providers = ["VitisAIExecutionProvider"] |
|
provider_options = [{"config_file": args.provider_config}] |
|
else: |
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
provider_options = None |
|
|
|
data = Data() |
|
data_loader = data.getEvalDataloader() |
|
|
|
model = rt.InferenceSession(MODEL_DIR, providers=providers, provider_options=provider_options) |
|
|
|
correct = 0 |
|
total = 0 |
|
|
|
for batch_idx, (imgs, labels, kps_mask, img_names) in enumerate(data_loader): |
|
|
|
if batch_idx%100 == 0: |
|
print('Finish ',batch_idx) |
|
|
|
imgs = imgs.detach().cpu().numpy() |
|
imgs = imgs.transpose((0,2,3,1)) |
|
output = model.run(['1548_transpose','1607_transpose','1665_transpose','1723_transpose'],{'blob.1':imgs}) |
|
output[0] = output[0].transpose((0,3,1,2)) |
|
output[1] = output[1].transpose((0,3,1,2)) |
|
output[2] = output[2].transpose((0,3,1,2)) |
|
output[3] = output[3].transpose((0,3,1,2)) |
|
pre = movenetDecode(output, kps_mask,mode='output',img_size=IMG_SIZE) |
|
gt = movenetDecode(labels, kps_mask,mode='label',img_size=IMG_SIZE) |
|
|
|
|
|
acc = myAcc(pre, gt) |
|
|
|
correct += sum(acc) |
|
total += len(acc) |
|
|
|
acc = correct/total |
|
print('[Info] acc: {:.3f}% \n'.format(100. * acc)) |