--- license: apache-2.0 tags: - RyzenAI - image-classification - onnx datasets: - imagenet-1k metrics: - accuracy --- ## MobileNetV2 MobileNetV2 is an image classification model pre-trained on ImageNet-1k dataset at resolution 224x224. It was introduced in the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler et al. and first released in [this repository](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet). We develop a modified version that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/). ## Model description MobileNetV2 is a simple network architecture that allows to build a family of highly efficient mobile models. It allows memory-efficient inference. MobileNetV2 is a model typically used for image classification tasks. And also can be used for object detection and image segmentation tasks. All tasks show competitive results. The model is named **mobilenet_v2_depth_size**, for example, **mobilenet_v2_1.4_224**, where **1.4** is the depth multiplier and **224** is the resolution of the input images the model was trained on. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co./models?search=mobilenet_v2) to look for fine-tuned versions on a task that interests you. ## How to use ### Installation 1. Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI. 2. Run the following script to install pre-requisites for this model. ```shell pip install -r requirements.txt ``` ### Test & Evaluation - Inference one image (Image Classification): ```python import sys import onnxruntime import torch import torchvision.transforms as transforms from PIL import Image image_path = sys.argv[1] onnx_model = sys.argv[2] normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) img_transformer = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize]) img_tensor = img_transformer(Image.open(image_path)).unsqueeze(0) so = onnxruntime.SessionOptions() ort_session = onnxruntime.InferenceSession( onnx_model, so, providers=['CPUExecutionProvider'], provider_options=None) input = img_tensor.numpy() ort_input = {ort_session.get_inputs()[0].name: input} output = ort_session.run(None, ort_input) top5_probabilities, top5_class_indices = torch.topk(torch.nn.functional.softmax(torch.tensor(output[0])), k=5) ``` - Evaluate ImageNet validation dataset (50,000 Images), using `eval_onnx.py` . - Test accuracy of the quantized model on CPU. ```shell python eval_onnx.py --onnx_model=./mobilenetv2_int8.onnx --data_dir=./{DATA_PATH} ``` - Test accuracy of the quantized model on IPU. ```shell python eval_onnx.py --onnx_model=./mobilenetv2_int8.onnx --data_dir=./{DATA_PATH} --ipu --provider_config Path\To\vaip_config.json ``` - Users can use `vaip_config.json` in folder `voe-4.0-win_amd64` of `ryzen-ai-sw-1.0.zip` file. ​ `DATA_PATH`: Path to ImageNet dataset where contains the `validation` folder. ### Performance Dataset: ImageNet validation dataset (50,000 images). | Metric | Accuracy on IPU | | :-----------------: | :-------------: | | top1& top5 accuracy | 75.62% / 92.52% | ## Citation ```bibtex @article{MobileNet v2, author = {Mark Sandler and Andrew G. Howard and Menglong Zhu and Andrey Zhmoginov and Liang{-}Chieh Chen}, title = {MobileNetV2: Inverted Residuals and Linear Bottlenecks}, year = {2018}, url = {http://arxiv.org/abs/1801.04381}, } ```