--- license: apache-2.0 datasets: - imagenet-1k metrics: - accuracy tags: - RyzenAI - vision - classification - pytorch - timm --- # MNASNet_b1 Quantized MNASNet_b1 model that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/). ## Model description MNASNet was first introduced in the paper [MnasNet: Platform-Aware Neural Architecture Search for Mobile](https://arxiv.org/abs/1807.11626). The model implementation is from [timm](https://huggingface.co./timm/mnasnet_100.rmsp_in1k). ## How to use ### Installation Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model. ```bash pip install -r requirements.txt ``` ### Data Preparation Follow [ImageNet](https://huggingface.co./datasets/imagenet-1k) to prepare dataset. ### Model Evaluation ```python python eval_onnx.py --onnx_model mnasnet_b1_int.onnx --ipu --provider_config Path\To\vaip_config.json --data_dir /Path/To/Your/Dataset ``` ### Performance |Metric |Accuracy on IPU| | :----: | :----: | |Top1/Top5| 73.51% / 91.56% | ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ``` ```bibtex @inproceedings{tan2019mnasnet, title={Mnasnet: Platform-aware neural architecture search for mobile}, author={Tan, Mingxing and Chen, Bo and Pang, Ruoming and Vasudevan, Vijay and Sandler, Mark and Howard, Andrew and Le, Quoc V}, booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, pages={2820--2828}, year={2019} } ```