import random | |
import numpy as np | |
import skimage.color as sc | |
import torch | |
def set_channel(*args, n_channels=3): | |
def _set_channel(img): | |
if img.ndim == 2: | |
img = np.expand_dims(img, axis=2) | |
c = img.shape[2] | |
if n_channels == 1 and c == 3: | |
img = np.expand_dims(sc.rgb2ycbcr(img)[:, :, 0], 2) | |
elif n_channels == 3 and c == 1: | |
img = np.concatenate([img] * n_channels, 2) | |
return img | |
return [_set_channel(a) for a in args] | |
def np2Tensor(*args, rgb_range=255, format='NCHW'): | |
def _np2Tensor(img, channel_format): | |
assert channel_format in ('NCHW', 'NHWC') | |
img = np.ascontiguousarray(img.transpose((2, 0, 1))) if channel_format == ('NCHW') else img | |
tensor = torch.from_numpy(img).float() | |
tensor.mul_(rgb_range / 255) | |
return tensor | |
return [_np2Tensor(a, format) for a in args] | |