import os import argparse import random import onnxruntime import numpy as np import cv2 from PIL import Image import torch import torch.nn.functional as F from utils import input_transform, pad_image, resize_image, preprocess, get_confusion_matrix parser = argparse.ArgumentParser(description='HRNet') parser.add_argument('-m', '--onnx-model', default='', type=str, help='Path to onnx model.') parser.add_argument('-idir', '--img-dir', default='', type=str, help='Path to image filehold.') parser.add_argument("--ipu", action="store_true", help="Use IPU for inference.") parser.add_argument("--provider_config", type=str, default="vaip_config.json", help="Path of the config file for seting provider_options.") args = parser.parse_args() INPUT_SIZE = [512, 1024] def run_onnx_inference(ort_session, img): """Infer an image with onnx seession Args: ort_session: Onnx session img (ndarray): Image to be infered. Returns: ndarray: Model inference result. """ pre_img, pad_h, pad_w = preprocess(img) img = np.expand_dims(pre_img, 0) img = np.transpose(img, (0,2,3,1)) ort_inputs = {ort_session.get_inputs()[0].name: img} o1 = ort_session.run(None, ort_inputs)[0] h, w = o1.shape[-2:] h_cut = int(h / INPUT_SIZE[0] * pad_h) w_cut = int(w / INPUT_SIZE[1] * pad_w) o1 = o1[..., :h - h_cut, :w - w_cut] return o1 def vis(out, image, save_path='color_.png'): pallete = [128, 64, 128, 244, 35, 232, 70, 70, 70, 102, 102, 156, 190, 153, 153, 153, 153, 153, 250, 170, 30, 220, 220, 0, 107, 142, 35, 152, 251, 152, 70, 130, 180, 220, 20, 60, 255, 0, 0, 0, 0, 142, 0, 0, 70, 0, 60, 100, 0, 80, 100, 0, 0, 230, 119, 11, 32 ] # out = out[0] out = out.transpose(0, 3, 1, 2) if out.shape[2] != image.shape[0] or out.shape[3] != image.shape[1]: out = torch.from_numpy(out).cpu() out = F.interpolate( out, size=image.shape[:2], mode='bilinear' ).numpy() classMap_numpy = np.argmax(out[0], axis=0) classMap_numpy = Image.fromarray(classMap_numpy.astype(np.uint8)) classMap_numpy_color = classMap_numpy.copy() classMap_numpy_color.putpalette(pallete) classMap_numpy_color.save(save_path) if __name__ == "__main__": onnx_path = args.onnx_model if args.ipu: providers = ["VitisAIExecutionProvider"] provider_options = [{"config_file": args.provider_config}] else: providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] provider_options = None img_dir = args.img_dir ort_session = onnxruntime.InferenceSession(onnx_path, providers=providers, provider_options=provider_options) img_names = os.listdir(img_dir) for img_name in img_names: image_path = os.path.join(img_dir, img_name) img = cv2.imread(image_path) img_vis = np.copy(img) outs = run_onnx_inference(ort_session, img) vis(outs, img_vis)