Upload 3 files
Browse filesUpdate code and model for NHWC format usage.
HighResolutionNet_int.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1daf04ac2d732c753c4bd79759d6942d62b55acb4cedc30e22ecbfa7647a5c22
|
3 |
+
size 263764409
|
hrnet_quantized_onnx_eval.py
CHANGED
@@ -127,7 +127,11 @@ def run_onnx_inference(ort_session, img):
|
|
127 |
ndarray: Model inference result.
|
128 |
"""
|
129 |
pre_img, pad_h, pad_w = preprocess(img)
|
|
|
|
|
130 |
img = np.expand_dims(pre_img, 0)
|
|
|
|
|
131 |
ort_inputs = {ort_session.get_inputs()[0].name: img}
|
132 |
o1 = ort_session.run(None, ort_inputs)[0]
|
133 |
h, w = o1.shape[-2:]
|
@@ -160,6 +164,8 @@ def testval(ort_session, root, list_path):
|
|
160 |
image = image.numpy()[0]
|
161 |
out = run_onnx_inference(ort_session, image)
|
162 |
size = label.size()
|
|
|
|
|
163 |
if out.shape[2] != size[1] or out.shape[3] != size[2]:
|
164 |
out = torch.from_numpy(out).cpu()
|
165 |
pred = F.interpolate(
|
|
|
127 |
ndarray: Model inference result.
|
128 |
"""
|
129 |
pre_img, pad_h, pad_w = preprocess(img)
|
130 |
+
# transform chw into hwc format
|
131 |
+
|
132 |
img = np.expand_dims(pre_img, 0)
|
133 |
+
img = np.transpose(img, (0,2,3,1))
|
134 |
+
|
135 |
ort_inputs = {ort_session.get_inputs()[0].name: img}
|
136 |
o1 = ort_session.run(None, ort_inputs)[0]
|
137 |
h, w = o1.shape[-2:]
|
|
|
164 |
image = image.numpy()[0]
|
165 |
out = run_onnx_inference(ort_session, image)
|
166 |
size = label.size()
|
167 |
+
# for hwc output
|
168 |
+
out = out.transpose(0, 3, 1, 2)
|
169 |
if out.shape[2] != size[1] or out.shape[3] != size[2]:
|
170 |
out = torch.from_numpy(out).cpu()
|
171 |
pred = F.interpolate(
|
hrnet_quantized_onnx_inference.py
CHANGED
@@ -37,6 +37,7 @@ def run_onnx_inference(ort_session, img):
|
|
37 |
"""
|
38 |
pre_img, pad_h, pad_w = preprocess(img)
|
39 |
img = np.expand_dims(pre_img, 0)
|
|
|
40 |
ort_inputs = {ort_session.get_inputs()[0].name: img}
|
41 |
o1 = ort_session.run(None, ort_inputs)[0]
|
42 |
h, w = o1.shape[-2:]
|
@@ -52,6 +53,7 @@ def vis(out, image, save_path='color_.png'):
|
|
52 |
220, 220, 0, 107, 142, 35, 152, 251, 152, 70, 130, 180, 220, 20, 60, 255, 0, 0, 0, 0, 142, 0, 0, 70,
|
53 |
0, 60, 100, 0, 80, 100, 0, 0, 230, 119, 11, 32 ]
|
54 |
# out = out[0]
|
|
|
55 |
if out.shape[2] != image.shape[0] or out.shape[3] != image.shape[1]:
|
56 |
out = torch.from_numpy(out).cpu()
|
57 |
out = F.interpolate(
|
|
|
37 |
"""
|
38 |
pre_img, pad_h, pad_w = preprocess(img)
|
39 |
img = np.expand_dims(pre_img, 0)
|
40 |
+
img = np.transpose(img, (0,2,3,1))
|
41 |
ort_inputs = {ort_session.get_inputs()[0].name: img}
|
42 |
o1 = ort_session.run(None, ort_inputs)[0]
|
43 |
h, w = o1.shape[-2:]
|
|
|
53 |
220, 220, 0, 107, 142, 35, 152, 251, 152, 70, 130, 180, 220, 20, 60, 255, 0, 0, 0, 0, 142, 0, 0, 70,
|
54 |
0, 60, 100, 0, 80, 100, 0, 0, 230, 119, 11, 32 ]
|
55 |
# out = out[0]
|
56 |
+
out = out.transpose(0, 3, 1, 2)
|
57 |
if out.shape[2] != image.shape[0] or out.shape[3] != image.shape[1]:
|
58 |
out = torch.from_numpy(out).cpu()
|
59 |
out = F.interpolate(
|