--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - 4bit - AWQ - AutoAWQ - 7b - quantized - Mistral - Mistral-7B --- # Model Card for alokabhishek/Mistral-7B-Instruct-v0.2-4bit-AWQ This repo contains 4-bit quantized (using AutoAWQ) model of Mistral AI_'s Mistral-7B-Instruct-v0.2 AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration is developed by MIT-HAN-Lab ## Model Details - Model creator: [Mistral AI_](https://huggingface.co./mistralai) - Original model: [Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) ### About 4 bit quantization using AutoAWQ - AutoAWQ github repo: [AutoAWQ github repo](https://github.com/casper-hansen/AutoAWQ/tree/main) - MIT-han-lab llm-aws github repo: [MIT-han-lab llm-aws github repo](https://github.com/mit-han-lab/llm-awq/tree/main) @inproceedings{lin2023awq, title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Chen, Wei-Ming and Wang, Wei-Chen and Xiao, Guangxuan and Dang, Xingyu and Gan, Chuang and Han, Song}, booktitle={MLSys}, year={2024} } # How to Get Started with the Model Use the code below to get started with the model. ## How to run from Python code #### First install the package ```shell !pip install autoawq !pip install accelerate ``` #### Import ```python import torch import os from torch import bfloat16 from huggingface_hub import login, HfApi, create_repo from transformers import AutoTokenizer, pipeline from awq import AutoAWQForCausalLM ``` #### Use a pipeline as a high-level helper ```python # define the model ID model_id_llama = "alokabhishek/Mistral-7B-Instruct-v0.2-4bit-AWQ" # Load model tokenizer_llama = AutoTokenizer.from_pretrained(model_id_llama, use_fast=True) model_llama = AutoAWQForCausalLM.from_quantized(model_id_llama, fuse_layer=True, trust_remote_code = False, safetensors = True) # Set up the prompt and prompt template. Change instruction as per requirements. prompt_llama = "Tell me a funny joke about Large Language Models meeting a Blackhole in an intergalactic Bar." fromatted_prompt = f''' [INST] You are a helpful, and fun loving assistant. Always answer as jestfully as possible.[/INST] [INST] {prompt_llama}[/INST]''' tokens = tokenizer_llama(fromatted_prompt, return_tensors="pt").input_ids.cuda() # Generate output, adjust parameters as per requirements generation_output = model_llama.generate(tokens, do_sample=True, temperature=1.7, top_p=0.95, top_k=40, max_new_tokens=512) # Print the output print(tokenizer_llama.decode(generation_output[0], skip_special_tokens=True)) ``` ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]