--- backbone: - diffusion domain: - multi-modal frameworks: - pytorch license: cc-by-nc-nd-4.0 metrics: - realism - video-video similarity studios: - damo/Video-to-Video tags: - video2video generation - diffusion model - 视频到视频 - 视频超分辨率 - 视频生成视频 - 生成 tasks: - video-to-video widgets: - examples: - inputs: - data: A panda eating bamboo on a rock. name: text - data: XXX/test.mpt name: video_path name: 2 title: 示例1 inferencespec: cpu: 4 gpu: 1 gpu_memory: 28000 memory: 32000 inputs: - name: text, video_path title: 输入英文prompt, 视频路径 type: str, str validator: max_words: 75, / task: video-to-video --- # Video-to-Video **MS-Vid2Vid-XL**旨在提升视频生成的时空连续性和分辨率,其作为I2VGen-XL的第二阶段以生成720P的视频,同时还可以用于文生视频、高清视频转换等任务。其训练数据包含了精选的海量的高清视频、图像数据(最短边>=720),可以将低分辨率的视频提升到更高分辨率(1280 * 720),且其可以处理几乎任意分辨率的视频(建议16:9的宽视频)。 **MS-Vid2Vid-XL** aims to improve the spatiotemporal continuity and resolution of video generation. It serves as the second stage of I2VGen-XL to generate 720P videos, and can also be used for various tasks such as text-to-video synthesis and high-quality video transfer. The training data includes a large collection of high-definition videos and images (with the shortest side >=720), allowing for the enhancement of low-resolution videos to higher resolutions (1280 * 720). It can handle videos of almost any resolution (preferably 16:9 aspect ratio).


Fig.1 MS-Vid2Vid-XL

体验地址(Project experience address): https://modelscope.cn/studios/damo/I2VGen-XL-Demo/summary ## 模型介绍 (Introduction) **MS-Vid2Vid-XL**和I2VGen-XL第一阶段相同,都是基于隐空间的视频扩散模型(VLDM),且其共享相同结构的时空UNet(ST-UNet),其设计细节延续我们自研[VideoComposer](https://videocomposer.github.io),具体可以参考其技术报告。 **MS-Vid2Vid-XL** and the first stage of I2VGen-XL share the same underlying video latent diffusion model (VLDM). They both utilize a spatiotemporal UNet (ST-UNet) with the same structure, which is designed based on our in-house VideoComposer. For more specific details, please refer to its technical report.








### 代码范例 (Code example) ```python from modelscope.pipelines import pipeline from modelscope.outputs import OutputKeys # VID_PATH: your video path # TEXT : your text description pipe = pipeline(task="video-to-video", model='damo/Video-to-Video') p_input = { 'video_path': VID_PATH, 'text': TEXT } output_video_path = pipe(p_input, output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO] ``` ### 模型局限 (Limitation) 本**MS-Vid2Vid-XL**可能存在如下可能局限性: - 目标距离较远时可能会存在一定的模糊,该问题可以通过输入文本来解决或缓解; - 计算时耗大,因为需要生成720P的视频,隐空间的尺寸为(160 * 90),单个视频计算时长>2分钟 - 目前仅支持英文,因为训练数据的原因目前仅支持英文输入 This **MS-Vid2Vid-XL** may have the following limitations: - There may be some blurriness when the target is far away. This issue can be addressed by providing input text. - Computation time is high due to the need to generate 720P videos. The latent space size is (160 * 90), and the computation time for a single video is more than 2 minutes. - Currently, it only supports English. This is due to the training data, which is limited to English inputs at the moment. ## 相关论文以及引用信息 (Reference) ``` @article{videocomposer2023, title={VideoComposer: Compositional Video Synthesis with Motion Controllability}, author={Wang, Xiang* and Yuan, Hangjie* and Zhang, Shiwei* and Chen, Dayou* and Wang, Jiuniu and Zhang, Yingya and Shen, Yujun and Zhao, Deli and Zhou, Jingren}, journal={arXiv preprint arXiv:2306.02018}, year={2023} } @inproceedings{videofusion2023, title={VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation}, author={Luo, Zhengxiong and Chen, Dayou and Zhang, Yingya and Huang, Yan and Wang, Liang and Shen, Yujun and Zhao, Deli and Zhou, Jingren and Tan, Tieniu}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, year={2023} } ``` ## 使用协议 (License Agreement) 我们的代码和模型权重仅可用于个人/学术研究,暂不支持商用。 Our code and model weights are only available for personal/academic research use and are currently not supported for commercial use.