--- extra_gated_heading: You need to share contact information with Alchemab to access this model extra_gated_prompt: >- ### FAbCon Terms of Use FAbCon models follow a [modified Apache 2.0 license](https://huggingface.co./alchemab/fabcon-small/blob/main/LICENSE.md) extra_gated_fields: First Name: text Last Name: text Email: text Organization: text By clicking 'Submit' below, I accept the terms of the license, agree to share contact information with Alchemab: checkbox I agree to being contacted about future products, services, and/or partnership opportunities: checkbox extra_gated_description: >- The information you provide will be collected, stored, processed, and shared in accordance with the Alchemab [Privacy Notice](https://www.alchemab.com/privacy-policy/). extra_gated_button_content: Submit license: other widget: - text: "ḢQVQLE" tags: - biology --- ## FAbCon-small 🦅🧬 FAbCon is a generative, antibody-specific language model based on the [Falcon model](https://huggingface.co./tiiuae/falcon-7b). It is pre-trained using causal language modelling, and is suitable for a range of tasks. FAbCon-small, FAbCon-medium, and FAbCon-large are available for non-commercial use via a modified Apache 2.0 license. For any users seeking commercial use of our models (and license for generated antibodies from all FAbCon models), please contact us. | Model variant | Parameters | Config | License | | ------------- | ---------- | ------ | ------- | | [FAbCon-small](https://huggingface.co./alchemab/fabcon-small) | 144M | 24L, 12H, 768d | Modified Apache 2.0 | | [FAbCon-medium](https://huggingface.co./alchemab/fabcon-medium) | 297M | 28L, 16H, 1024d | Modified Apache 2.0 | | [FAbCon-large](https://huggingface.co./alchemab/fabcon-large) | 2.4B | 56L, 32H, 2048d | Modified Apache 2.0 | ## Usage example - generation Generating sequences can be done using HuggingFace's built-in `model.generate` method, ``` from transformers import ( PreTrainedTokenizerFast, FalconForCausalLM ) >>> tokenizer = PreTrainedTokenizerFast.from_pretrained("alchemab/fabcon-small") >>> model = FalconForCausalLM.from_pretrained("alchemab/fabcon-small") >>> o = model.generate( tokenizer("Ḣ", return_tensors='pt')['input_ids'][:, :-1], max_new_tokens=..., top_k = ..., temperature = ... ) >>> decoded_seq = tokenizer.batch_decode(o) ``` ## Usage example - sequence property prediction Use the `transformers` built-in SequenceClassification classes ``` from transformers import ( PreTrainedTokenizerFast, FalconForSequenceClassification ) >>> tokenizer = PreTrainedTokenizerFast.from_pretrained("alchemab/fabcon-small") >>> model = FalconForSequenceClassification.from_pretrained("alchemab/fabcon-small") >>> o = model(input_ids=tokenizer("Ḣ", return_tensors='pt')['input_ids'], attention_mask=tokenizer("Ḣ", return_tensors='pt')['attention_mask']) ```