--- tags: - merge - mergekit - lazymergekit - yuiseki/tinyllama-coder-sql-en-v0.1 - TinyLlama/TinyLlama-1.1B-Chat-v1.0 base_model: - yuiseki/tinyllama-coder-sql-en-v0.1 - TinyLlama/TinyLlama-1.1B-Chat-v1.0 --- # chat-sql chat-sql is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [yuiseki/tinyllama-coder-sql-en-v0.1](https://huggingface.co./yuiseki/tinyllama-coder-sql-en-v0.1) * [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0) ## 🧩 Configuration ```yaml slices: - sources: - model: yuiseki/tinyllama-coder-sql-en-v0.1 layer_range: [0, 22] - model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 layer_range: [0, 22] merge_method: slerp base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 parameters: t: - filter: lm_head value: [0.75] - filter: embed_tokens value: [0.75] - filter: self_attn value: [0.75,0.25] - filter: mlp value: [0.25,0.75] - filter: layernorm value: [0.5,0.5] - filter: modelnorm value: [0.75] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "ajay141/chat-sql" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```