--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-pashto results: [] --- # whisper-small-pashto This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4625 - Wer: 30.8805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.008 | 0.9901 | 100 | 0.4411 | 28.5655 | | 0.0058 | 1.9802 | 200 | 0.4440 | 28.3175 | | 0.0073 | 2.9703 | 300 | 0.4664 | 28.9376 | | 0.0095 | 3.9604 | 400 | 0.4832 | 30.6738 | | 0.0148 | 4.9505 | 500 | 0.4625 | 30.8805 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.2.0 - Datasets 3.2.0 - Tokenizers 0.21.0