abhinand commited on
Commit
7f28edc
1 Parent(s): 523c5a0

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "none",
3
+ "architectures": [
4
+ "GOTQwenForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "freeze_vision_tower": false,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 1024,
12
+ "im_end_token": 151858,
13
+ "im_patch_token": 151859,
14
+ "im_start_token": 151857,
15
+ "image_token_len": 256,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 2816,
18
+ "max_position_embeddings": 32768,
19
+ "max_window_layers": 21,
20
+ "model_type": "GOT",
21
+ "num_attention_heads": 16,
22
+ "num_hidden_layers": 24,
23
+ "num_key_value_heads": 16,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_theta": 1000000.0,
26
+ "sliding_window": 32768,
27
+ "tie_word_embeddings": true,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.37.2",
30
+ "use_cache": true,
31
+ "use_im_start_end": true,
32
+ "use_sliding_window": false,
33
+ "vision_select_layer": -2,
34
+ "vision_tower": "none",
35
+ "vocab_size": 151860
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.37.2"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77d6144039548b14253176b6eb264896bc39eba532f8894700f210a7fd2a5956
3
+ size 1432121416
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "pad_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ }
9
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ SPECIAL_TOKENS = (
31
+ ENDOFTEXT,
32
+ IMSTART,
33
+ IMEND,
34
+ ) + EXTRAS
35
+
36
+
37
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
38
+ with open(tiktoken_bpe_file, "rb") as f:
39
+ contents = f.read()
40
+ return {
41
+ base64.b64decode(token): int(rank)
42
+ for token, rank in (line.split() for line in contents.splitlines() if line)
43
+ }
44
+
45
+ class QWenTokenizer(PreTrainedTokenizer):
46
+ """QWen tokenizer."""
47
+
48
+ vocab_files_names = VOCAB_FILES_NAMES
49
+
50
+ def __init__(
51
+ self,
52
+ vocab_file,
53
+ errors="replace",
54
+ image_start_tag='<img>',
55
+ image_end_tag='</img>',
56
+ image_pad_tag='<imgpad>',
57
+ ref_start_tag='<ref>',
58
+ ref_end_tag='</ref>',
59
+ box_start_tag='<box>',
60
+ box_end_tag='</box>',
61
+ quad_start_tag='<quad>',
62
+ quad_end_tag='</quad>',
63
+ **kwargs,
64
+ ):
65
+ super().__init__(**kwargs)
66
+
67
+ self.image_start_tag = image_start_tag
68
+ self.image_end_tag = image_end_tag
69
+ self.image_pad_tag = image_pad_tag
70
+ self.ref_start_tag = ref_start_tag
71
+ self.ref_end_tag = ref_end_tag
72
+ self.box_start_tag = box_start_tag
73
+ self.box_end_tag = box_end_tag
74
+ self.quad_start_tag = quad_start_tag
75
+ self.quad_end_tag = quad_end_tag
76
+ self.IMAGE_ST = (
77
+ ref_start_tag, ref_end_tag,
78
+ box_start_tag, box_end_tag,
79
+ quad_start_tag, quad_end_tag,
80
+ image_start_tag, image_end_tag,
81
+ image_pad_tag
82
+ )
83
+
84
+ self.errors = errors # how to handle errors in decoding
85
+
86
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
87
+ self.special_tokens = {
88
+ token: index
89
+ for index, token in enumerate(
90
+ SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
91
+ )
92
+ }
93
+
94
+ self.img_start_id = self.special_tokens[self.image_start_tag]
95
+ self.img_end_id = self.special_tokens[self.image_end_tag]
96
+ self.img_pad_id = self.special_tokens[self.image_pad_tag]
97
+ self.ref_start_id = self.special_tokens[self.ref_start_tag]
98
+ self.ref_end_id = self.special_tokens[self.ref_end_tag]
99
+ self.box_start_id = self.special_tokens[self.box_start_tag]
100
+ self.box_end_id = self.special_tokens[self.box_end_tag]
101
+ self.quad_start_id = self.special_tokens[self.quad_start_tag]
102
+ self.quad_end_id = self.special_tokens[self.quad_end_tag]
103
+
104
+ enc = tiktoken.Encoding(
105
+ "Qwen",
106
+ pat_str=PAT_STR,
107
+ mergeable_ranks=self.mergeable_ranks,
108
+ special_tokens=self.special_tokens,
109
+ )
110
+ assert (
111
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
112
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
113
+
114
+ self.decoder = {
115
+ v: k for k, v in self.mergeable_ranks.items()
116
+ } # type: dict[int, bytes|str]
117
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
118
+
119
+ self.tokenizer = enc # type: tiktoken.Encoding
120
+
121
+ self.eod_id = self.tokenizer.eot_token
122
+ self.im_start_id = self.special_tokens[IMSTART]
123
+ self.im_end_id = self.special_tokens[IMEND]
124
+
125
+ def __len__(self) -> int:
126
+ return self.tokenizer.n_vocab
127
+
128
+ def get_vocab(self) -> Dict[bytes, int]:
129
+ return self.mergeable_ranks
130
+
131
+ def convert_tokens_to_ids(
132
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
133
+ ) -> List[int]:
134
+ ids = []
135
+ if isinstance(tokens, (str, bytes)):
136
+ if tokens in self.special_tokens:
137
+ return self.special_tokens[tokens]
138
+ else:
139
+ return self.mergeable_ranks.get(tokens)
140
+ for token in tokens:
141
+ if token in self.special_tokens:
142
+ ids.append(self.special_tokens[token])
143
+ else:
144
+ ids.append(self.mergeable_ranks.get(token))
145
+ return ids
146
+
147
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
148
+ if not special_tokens and new_tokens:
149
+ raise ValueError('Adding regular tokens is not supported')
150
+ for token in new_tokens:
151
+ surface_form = token.content if isinstance(token, AddedToken) else token
152
+ if surface_form not in SPECIAL_TOKENS:
153
+ raise ValueError('Adding unknown special tokens is not supported')
154
+ return 0
155
+
156
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
157
+ """
158
+ Save only the vocabulary of the tokenizer (vocabulary).
159
+
160
+ Returns:
161
+ `Tuple(str)`: Paths to the files saved.
162
+ """
163
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
164
+ with open(file_path, "w", encoding="utf8") as w:
165
+ for k, v in self.mergeable_ranks.items():
166
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
167
+ w.write(line)
168
+ return (file_path,)
169
+
170
+ def tokenize(
171
+ self,
172
+ text: str,
173
+ allowed_special: Union[Set, str] = "all",
174
+ disallowed_special: Union[Collection, str] = (),
175
+ **kwargs,
176
+ ) -> List[Union[bytes, str]]:
177
+ """
178
+ Converts a string in a sequence of tokens.
179
+
180
+ Args:
181
+ text (`str`):
182
+ The sequence to be encoded.
183
+ allowed_special (`Literal["all"]` or `set`):
184
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
185
+ Default to "all".
186
+ disallowed_special (`Literal["all"]` or `Collection`):
187
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
188
+ Default to an empty tuple.
189
+
190
+ kwargs (additional keyword arguments, *optional*):
191
+ Will be passed to the underlying model specific encode method.
192
+
193
+ Returns:
194
+ `List[bytes|str]`: The list of tokens.
195
+ """
196
+ tokens = []
197
+ text = unicodedata.normalize("NFC", text)
198
+
199
+ # this implementation takes a detour: text -> token id -> token surface forms
200
+ for t in self.tokenizer.encode(
201
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
202
+ ):
203
+ tokens.append(self.decoder[t])
204
+ return tokens
205
+
206
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
207
+ """
208
+ Converts a sequence of tokens in a single string.
209
+ """
210
+ text = ""
211
+ temp = b""
212
+ for t in tokens:
213
+ if isinstance(t, str):
214
+ if temp:
215
+ text += temp.decode("utf-8", errors=self.errors)
216
+ temp = b""
217
+ text += t
218
+ elif isinstance(t, bytes):
219
+ temp += t
220
+ else:
221
+ raise TypeError("token should only be of type types or str")
222
+ if temp:
223
+ text += temp.decode("utf-8", errors=self.errors)
224
+ return text
225
+
226
+ @property
227
+ def vocab_size(self):
228
+ return self.tokenizer.n_vocab
229
+
230
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
231
+ """Converts an id to a token, special tokens included"""
232
+ if index in self.decoder:
233
+ return self.decoder[index]
234
+ raise ValueError("unknown ids")
235
+
236
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
237
+ """Converts a token to an id using the vocab, special tokens included"""
238
+ if token in self.special_tokens:
239
+ return self.special_tokens[token]
240
+ if token in self.mergeable_ranks:
241
+ return self.mergeable_ranks[token]
242
+ raise ValueError("unknown token")
243
+
244
+ def _tokenize(self, text: str, **kwargs):
245
+ """
246
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
247
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
248
+
249
+ Do NOT take care of added tokens.
250
+ """
251
+ raise NotImplementedError
252
+
253
+ def _decode(
254
+ self,
255
+ token_ids: Union[int, List[int]],
256
+ skip_special_tokens: bool = False,
257
+ errors: str = None,
258
+ **kwargs,
259
+ ) -> str:
260
+ if isinstance(token_ids, int):
261
+ token_ids = [token_ids]
262
+ if skip_special_tokens:
263
+ token_ids = [i for i in token_ids if i < self.eod_id]
264
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 8000,
11
+ "pad_token": "<|endoftext|>",
12
+ "padding_side": "right",
13
+ "tokenizer_class": "QWenTokenizer"
14
+ }