Update README.md
Browse files
README.md
CHANGED
@@ -5,18 +5,110 @@ license: apache-2.0
|
|
5 |
tags:
|
6 |
- text-generation-inference
|
7 |
- transformers
|
8 |
-
-
|
9 |
- llama
|
10 |
- trl
|
11 |
base_model: unsloth/llama-3-8b-Instruct
|
12 |
---
|
13 |
|
|
|
14 |
# Uploaded model
|
15 |
|
16 |
-
- **
|
17 |
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :** unsloth/llama-3-8b-Instruct
|
19 |
|
20 |
-
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
tags:
|
6 |
- text-generation-inference
|
7 |
- transformers
|
8 |
+
- llama3
|
9 |
- llama
|
10 |
- trl
|
11 |
base_model: unsloth/llama-3-8b-Instruct
|
12 |
---
|
13 |
|
14 |
+
|
15 |
# Uploaded model
|
16 |
|
17 |
+
- **Finetuned by:** Zardos
|
18 |
- **License:** apache-2.0
|
|
|
19 |
|
|
|
20 |
|
21 |
+
## How to use
|
22 |
+
|
23 |
+
This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase.
|
24 |
+
|
25 |
+
### Use with transformers
|
26 |
+
|
27 |
+
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
|
28 |
+
|
29 |
+
#### Transformers pipeline
|
30 |
+
|
31 |
+
```python
|
32 |
+
import transformers
|
33 |
+
import torch
|
34 |
+
|
35 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
36 |
+
|
37 |
+
pipeline = transformers.pipeline(
|
38 |
+
"text-generation",
|
39 |
+
model=model_id,
|
40 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
41 |
+
device_map="auto",
|
42 |
+
)
|
43 |
+
|
44 |
+
messages = [
|
45 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
46 |
+
{"role": "user", "content": "Who are you?"},
|
47 |
+
]
|
48 |
+
|
49 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
50 |
+
messages,
|
51 |
+
tokenize=False,
|
52 |
+
add_generation_prompt=True
|
53 |
+
)
|
54 |
+
|
55 |
+
terminators = [
|
56 |
+
pipeline.tokenizer.eos_token_id,
|
57 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
58 |
+
]
|
59 |
+
|
60 |
+
outputs = pipeline(
|
61 |
+
prompt,
|
62 |
+
max_new_tokens=256,
|
63 |
+
eos_token_id=terminators,
|
64 |
+
do_sample=True,
|
65 |
+
temperature=0.6,
|
66 |
+
top_p=0.9,
|
67 |
+
)
|
68 |
+
print(outputs[0]["generated_text"][len(prompt):])
|
69 |
+
```
|
70 |
+
|
71 |
+
#### Transformers AutoModelForCausalLM
|
72 |
+
|
73 |
+
```python
|
74 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
75 |
+
import torch
|
76 |
+
|
77 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
78 |
+
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
80 |
+
model = AutoModelForCausalLM.from_pretrained(
|
81 |
+
model_id,
|
82 |
+
torch_dtype=torch.bfloat16,
|
83 |
+
device_map="auto",
|
84 |
+
)
|
85 |
+
|
86 |
+
messages = [
|
87 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
88 |
+
{"role": "user", "content": "Who are you?"},
|
89 |
+
]
|
90 |
+
|
91 |
+
input_ids = tokenizer.apply_chat_template(
|
92 |
+
messages,
|
93 |
+
add_generation_prompt=True,
|
94 |
+
return_tensors="pt"
|
95 |
+
).to(model.device)
|
96 |
+
|
97 |
+
terminators = [
|
98 |
+
tokenizer.eos_token_id,
|
99 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
100 |
+
]
|
101 |
+
|
102 |
+
outputs = model.generate(
|
103 |
+
input_ids,
|
104 |
+
max_new_tokens=256,
|
105 |
+
eos_token_id=terminators,
|
106 |
+
do_sample=True,
|
107 |
+
temperature=0.6,
|
108 |
+
top_p=0.9,
|
109 |
+
)
|
110 |
+
response = outputs[0][input_ids.shape[-1]:]
|
111 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
112 |
+
```
|
113 |
+
|
114 |
+
|