### Quick Use ```python import os import torch import json import argparse from tqdm import tqdm from collections import defaultdict import torch.nn.functional as F from time import time from easydict import EasyDict as edict from model.mico import * def load_from_pretrained_dir(pretrain_dir, video_resolution=224, return_modal="full"): checkpoint_dir = os.path.join(pretrain_dir,'ckpt') file_cfg = edict(json.load(open(os.path.join(pretrain_dir,'log','hps.json')))) model_cfg = file_cfg.model_cfg checkpoint_ls = [ i for i in os.listdir(checkpoint_dir) if i.startswith('model_step')] checkpoint_ls = [int(i.split('_')[2].split('.')[0]) for i in checkpoint_ls] checkpoint_ls.sort() step = checkpoint_ls[-1] checkpoint_name = 'model_step_'+str(step)+'.pt' ckpt_file = os.path.join(checkpoint_dir, checkpoint_name) checkpoint = torch.load(ckpt_file, map_location = 'cpu') print(f'load_from_pretrained: {ckpt_file}') new_ckpt = {} for k,v in checkpoint.items(): if 'video' in k: new_ckpt[k.replace('video','vision')]=v elif 'evaclip_model' in k: new_ckpt[k.replace('evaclip_model','vision_encoder')]=v elif 'clip_model' in k: new_ckpt[k.replace('clip_model','vision_encoder')]=v else: new_ckpt[k] = v.float() checkpoint = new_ckpt if model_cfg.frame_embedding_type == 'adaptive': if 'vision_frame_embedding' in checkpoint: pretrain_embed = checkpoint['vision_frame_embedding'] if pretrain_embed.shape[1]!=model_cfg.max_vision_sample_num: pretrain_embed = F.interpolate(pretrain_embed.permute(0,2,1),model_cfg.max_vision_sample_num,mode='nearest').permute(0,2,1) checkpoint['vision_frame_embedding'] = pretrain_embed else: pretrain_embed = checkpoint['vision_perceiver.vision_frame_embedding'] if pretrain_embed.shape[1]!=model_cfg.max_vision_sample_num: pretrain_embed = F.interpolate(pretrain_embed.permute(0,2,1),model_cfg.max_vision_sample_num,mode='nearest').permute(0,2,1) checkpoint['vision_perceiver.vision_frame_embedding'] = pretrain_embed if 'audio_frame_embedding' in checkpoint: pretrain_embed_a = checkpoint['audio_frame_embedding'] if pretrain_embed_a.shape[1]!=model_cfg.max_audio_sample_num: pretrain_embed_a = F.interpolate(pretrain_embed_a.permute(0,2,1),model_cfg.max_audio_sample_num,mode='nearest').permute(0,2,1) checkpoint['audio_frame_embedding'] = pretrain_embed_a if model_cfg.vision_encoder_type.startswith('clip'): vision_width = checkpoint["vision_encoder.visual.positional_embedding"].shape[1] vision_layers = len([k for k in checkpoint.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = checkpoint["vision_encoder.visual.conv1.weight"].shape[-1] grid_size = round((checkpoint["vision_encoder.visual.positional_embedding"].shape[0] - 1) ** 0.5) src = checkpoint["vision_encoder.visual.positional_embedding"] src_cls = src[0:1] src_oth = src[1:] new_grid_size = model_cfg.vision_resolution // vision_patch_size if new_grid_size!=grid_size: src_oth = F.interpolate(src_oth.reshape(grid_size,grid_size,vision_width).permute(2,0,1).unsqueeze(0),(new_grid_size,new_grid_size),mode='bilinear') src_oth = src_oth[0].permute(1,2,0).reshape(-1,src.shape[-1]) tgt = torch.cat((src_cls,src_oth),dim=0) checkpoint["vision_encoder.visual.positional_embedding"] = tgt elif model_cfg.vision_encoder_type.startswith('evaclip'): vision_width = checkpoint["vision_encoder.visual.pos_embed"].shape[2] vision_layers = len([k for k in checkpoint.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = checkpoint["vision_encoder.visual.patch_embed.proj.weight"].shape[-1] grid_size = round((checkpoint["vision_encoder.visual.pos_embed"].shape[1] - 1) ** 0.5) src = checkpoint["vision_encoder.visual.pos_embed"][0] src_cls = src[0:1] src_oth = src[1:] new_grid_size = model_cfg.vision_resolution // vision_patch_size if new_grid_size!=grid_size: src_oth = F.interpolate(src_oth.reshape(grid_size,grid_size,vision_width).permute(2,0,1).unsqueeze(0),(new_grid_size,new_grid_size),mode='bilinear') src_oth = src_oth[0].permute(1,2,0).reshape(-1,src.shape[-1]) tgt = torch.cat((src_cls,src_oth),dim=0) checkpoint["vision_encoder.visual.pos_embed"] = tgt.unsqueeze(0) else: pass if return_modal=="full": new_ckpt = checkpoint elif return_modal=="uni": new_ckpt = defaultdict() for k in checkpoint.keys(): if "video_encoder" in k: new_k = ".".join(k.split(".")[1:]) new_ckpt[new_k] = checkpoint[k] elif return_modal=="text": new_ckpt = defaultdict() for k in checkpoint.keys(): if "multimodal_encoder" in k: new_k = ".".join(k.split(".")[1:]) new_ckpt[new_k] = checkpoint[k] else: pass return new_ckpt, model_cfg if __name__ == "__main__": # import ipdb # ipdb.set_trace() device = "cuda" from model.imageprocessor import ImageProcessor pretrain_path = 'MiCo-g' # please check your checkpoint, opts = load_from_pretrained_dir("MiCo-g", video_resolution=224, return_modal="full") model = MiCo.from_pretrained(opts,checkpoint).to(device) image_file = "example/test.jpeg" proc = ImageProcessor(image_resolution=224, image_encoder_type="swin", training=True) image_input = proc(image_file).to(device) image_input = image_input.unsqueeze(1) # image as a 1 frame video video_output = model.forward_vision_encoder(image_input) video_output_pooled = model.pool_vision_for_contra(video_output) feat_v = model.contra_head_v(video_output_pooled) feat_v = F.normalize(feat_v,dim=-1) texts = ["a man is skiing in a snowy day.", "it's a hot day"] caption_tokens = model.multimodal_encoder.tokenizer(texts, padding="max_length", truncation=True, max_length=30, return_tensors="pt") caption_tokens = caption_tokens.to(torch.device('cuda')) input_ids = caption_tokens.input_ids attention_mask = caption_tokens.attention_mask caption_output = model.forward_multimodal_encoder(input_ids, attention_mask).sequence_output caption_output_pooled = model.pool_text_for_contra(caption_output) feat_t = model.contra_head_t(caption_output_pooled) feat_t = F.normalize(feat_t,dim=-1) sim_t2v = torch.matmul(feat_t, feat_v.permute(1,0)) print(sim_t2v) video_input = model.get_multimodal_forward_input_vision(video_output) slice_output = model.forward_multimodal_encoder(input_ids, attention_mask, video_input).sequence_output slice_scores = F.softmax(model.itm_head(slice_output[:,0]),dim=1)[:,1] print(slice_scores) video_input = model.get_multimodal_forward_input_vision(video_output) init_input_ids = torch.ones(video_input.size(0), 1).long().cuda().fill_(model.multimodal_encoder.tokenizer.bos_token_id) init_attention_mask = init_input_ids.new_ones(video_input.size(0), 1, 1) outputs = model.multimodal_encoder.generate(input_ids=init_input_ids, attention_mask=init_attention_mask, encoder_hidden_states=video_input, max_new_tokens=model.max_caption_len, num_beams=model.beam_size, eos_token_id=model.multimodal_encoder.tokenizer.sep_token_id, pad_token_id=model.multimodal_encoder.tokenizer.pad_token_id, length_penalty=0.6) outputs_newgen = outputs[:,1:] captions = model.multimodal_encoder.tokenizer.batch_decode(outputs_newgen, skip_special_tokens=True) print(captions) ``` ### โจ Inspiration of Multimodal Context: Multimedia Brain Cognition
***How the human brain performs coherent multimodal cognition?*** As outlined in Richard Mayer's Cognitive Theory of Multimedia Learning,our brain processes multimedia signals through two distinct channelsโauditory and visualโin sensory memory, as depicted in Figure(a). The sensory memory integrates these signals with prior knowledge through words, transforming new multimedia information into long-term memory. Notably, **1**) multimedia signals in the brain share channels, and **2**) words function as the reasoning interface in our brain. Inspired by these insights, we categorize diverse modalities into two types: ``knowledge modality`` and ``interface modality``. *Knowledge modalities*, primarily derived from raw sensors, contribute knowledge in diverse formats. For example, images and depth maps offer visual knowledge, while audio and video provide auditory and spatiotemporal knowledge. The language modality, developed by humans, is inherently more abstract and naturally functions as the *interface modality*, facilitating learning, reasoning, and the coordination of knowledge. To this end, we design an omni-modal learning architecture, illustrated in Figure (b), with two distinct branches: one for knowledge modalities and one for the interface modality, *i.e.* natural language. The knowledge and interface modalities are aligned through a novel generative reasoning method. ### ๐ MiCo, An omni-modal and scalable pretraining paradigm
We propose collecting large-scale omni-modal paired data, including text, image, video, depth, and normal maps, to learn universal representations.
**๐ Evolution of Pretraining Paradigms**. Masked modeling (a) has shown great success in single modality, general-purpose understanding. Contrastive learning (b) distinguishes transferable features with modality tuples (such as text-image, text-video, text-audio, etc). *๐๐๐ We aim to achieve general-purpose omni-modal understanding and learn transferable, universal representations in (c).* ### ๐๐๐ The Multimodal Scaling Laws with MiCo: Modalities Help Modalies!
### ๐ Pretrained Omni-Modal Models **We will continue to update this model zoo including all scales of ViTs and highly-efficient ConvNets with the MiCo pretraining paradigm**