--- license: other tags: - yi - moe license_name: yi-license license_link: https://huggingface.co./01-ai/Yi-34B-200K/blob/main/LICENSE model-index: - name: Helion-4x34B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.71 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.28 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.33 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.91 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.37 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.25 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Helion-4x34B name: Open LLM Leaderboard --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/GA28gWAezC9qhrTcwSfuA.jpeg) # Helion-4x34B This is the model for Helion-4x34B. I used [this repo](https://bit.ly/weyaxi-moe-repo) to make this MOE model. # Prompt Template(s): Since [bagel-dpo-34b-v0.2](https://huggingface.co./jondurbin/bagel-dpo-34b-v0.2) uses many prompt templates, you can utilize prompt templates provided by bagel and other expert's prompt templates. **Note:** I currently do not know which prompt template is best. ### ChatML: ``` <|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|> ``` ### Human Asistant ``` Human: {user} ### Assistant: {asistant} ``` ### Alpaca (sort of) ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {system} {instruction} ### Response: ``` ### Vicuna ``` {system} USER: {instruction} ASSISTANT: ``` Visit [bagel-dpo-34b-v0.2](https://huggingface.co./jondurbin/bagel-dpo-34b-v0.2) to try more prompt templates. # Yaml Config to reproduce ```yaml base_model: nontoxic-bagel-34b-v0.2 gate_mode: hidden dtype: bfloat16 experts: - source_model: bagel-dpo-34b-v0.2 positive_prompts: ["question answering", "Q:", science", "biology", "chemistry", "physics"] negative_prompts: ["math", "reason", "mathematics", "solve", "count", "code", "python", "javascript", "programming", "algorithm"] - source_model: Nous-Hermes-2-Yi-34B positive_prompts: ["chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"] - source_model: SUS-Chat-34B positive_prompts: ["math", "reason", "mathematics", "solve", "count", "assistant"] - source_model: platypus-yi-34b positive_prompts: [""] negative_prompts: ["math", "reason", "mathematics", "solve", "count"] ``` # Quantizationed versions Quantizationed versions of this model is available thanks to [TheBloke](https://hf.co/TheBloke). ##### GPTQ - [TheBloke/Helion-4x34B-GPTQ](https://huggingface.co./TheBloke/Helion-4x34B-GPTQ) ##### GGUF - [TheBloke/Helion-4x34B-GGUF](https://huggingface.co./TheBloke/Helion-4x34B-GGUF) ##### AWQ - [TheBloke/Helion-4x34B-AWQ](https://huggingface.co./TheBloke/Helion-4x34B-AWQ) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Weyaxi__Helion-4x34B) | Metric |Value| |---------------------------------|----:| |Avg. |75.48| |AI2 Reasoning Challenge (25-Shot)|69.71| |HellaSwag (10-Shot) |85.28| |MMLU (5-Shot) |77.33| |TruthfulQA (0-shot) |63.91| |Winogrande (5-shot) |84.37| |GSM8k (5-shot) |72.25| If you would like to support me: [☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)