--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - NeuralNovel/Valor-7B-v0.1 - Toten5/Marcoroni-neural-chat-7B-v1 base_model: - NeuralNovel/Valor-7B-v0.1 - Toten5/Marcoroni-neural-chat-7B-v1 --- # Valor_Macaroni_moe Valor_Macaroni_moe is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NeuralNovel/Valor-7B-v0.1](https://huggingface.co./NeuralNovel/Valor-7B-v0.1) * [Toten5/Marcoroni-neural-chat-7B-v1](https://huggingface.co./Toten5/Marcoroni-neural-chat-7B-v1) ## 🧩 Configuration ```yaml base_model: NeuralNovel/Valor-7B-v0.1 gate_mode: cheap_embed experts: - source_model: NeuralNovel/Valor-7B-v0.1 positive_prompts: ["What should I do if lost my mobile phone"] - source_model: Toten5/Marcoroni-neural-chat-7B-v1 positive_prompts: ["I have 3 apples. I lost 2 out of it. After that my father gave me another 3. How many do I have now?"] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Vasanth/Valor_Macaroni_moe" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```