--- license: other license_name: umamusume-derivativework-guidelines license_link: https://umamusume.jp/derivativework_guidelines/ --- # About **ULTIMA-YOLO** models
This is a part of [ULTIMA](https://huggingface.co./datasets/UmaDiffusion/ULTIMA) project. ULTIMA is **U**ma Musume **L**abeled **T**ext-**I**mage **M**ultimodal **A**lignment. ULTIMA-YOLOv9 model is a facial detection model for Uma Musumes in illustrations and based on [yolov9](https://arxiv.org/abs/2402.13616)-e and [ULTIMA-YOLO dataset](https://huggingface.co./datasets/UmaDiffusion/ULTIMA-YOLO) This is the model repository for ULTIMA-YOLOv9, containing the following checkpoints: - YOLO9-E ### How to Use Clone YOLOv9 repository. ``` git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 ``` Download the weights using `hf_hub_download` and use the loading function in helpers of YOLOv9. ```python from huggingface_hub import hf_hub_download hf_hub_download("UmaDiffusion/ULTIMA-YOLOv9", filename="ultima_yolov9-e.pt", local_dir="./") ``` Load the model. ```python # make sure you have the following dependencies import torch import numpy as np from models.common import DetectMultiBackend from utils.general import non_max_suppression, scale_boxes from utils.torch_utils import select_device, smart_inference_mode from utils.augmentations import letterbox import PIL.Image @smart_inference_mode() def predict(image_path, weights='ultima_yolov9-e.pt', imgsz=640, conf_thres=0.1, iou_thres=0.45): # Initialize device = select_device('0') model = DetectMultiBackend(weights='yolov9-e.pt', device="0", fp16=False, data='data/coco.yaml') stride, names, pt = model.stride, model.names, model.pt # Load image image = np.array(PIL.Image.open(image_path)) img = letterbox(img0, imgsz, stride=stride, auto=True)[0] img = img[:, :, ::-1].transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(device).float() img /= 255.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference pred = model(img, augment=False, visualize=False) # Apply NMS pred = non_max_suppression(pred[0][0], conf_thres, iou_thres, classes=None, max_det=1000) ``` or use `detect_dual.py` in yolov9 repo. ```bash python ./detect_dual.py --source [image_path] --device 0 --img 1280 --weights './ultima_yolov9.pt' --name ultima_yolov9_1280_detect ``` # Training Infomation - Batch Size: 32 - Resolution: 640 - Epochs: 300, chosen best mAP - GPU: 1x A6000 48GB # Statistics - Train: 3,991 images - Val: 399 images | Character Name | # in Train | # in Val | Precision | Recall | mAP50 | mAP50-95 | |:------------------:|:---:|:---:|:---:|:---:|:---:|:---:| | Agnes Tachyon | 187 | 35 | 0.957 | 0.886 | 0.961 | 0.765 | | Air Groove | 87 | 12 | 1 | 0.835 | 0.933 | 0.713 | | Air Shakur | 75 | 12 | 0.986 | 1 | 0.995 | 0.909 | | Akikawa Yayoi | 25 | 3 | 1 | 0.693 | 0.995 | 0.648 | | Admire Vega | 74 | 16 | 1 | 0.754 | 0.894 | 0.707 | | Agnes Digital | 50 | 6 | 0.992 | 0.833 | 0.972 | 0.803 | | Anshinzawa Sasami | 25 | 1 | 0.956 | 1 | 0.995 | 0.796 | | Aston Machan | 55 | 3 | 1 | 0.726 | 0.995 | 0.912 | | Bamboo Memory | 41 | 3 | 0.97 | 1 | 0.995 | 0.895 | | Biko Pegasus | 34 | 3 | 0.972 | 1 | 0.995 | 0.84 | | Byerley Turk | 43 | 2 | 0.951 | 1 | 0.995 | 0.855 | | Bitter Glace | 24 | 0 | 0.888 | 0.875 | 0.944 | 0.776 | | Biwa Hayahide | 52 | 8 | 0.821 | 1 | 0.995 | 0.846 | | Copano Rickey | 51 | 5 | 0.969 | 0.667 | 0.864 | 0.69 | | Curren Chan | 54 | 9 | 0.996 | 1 | 0.995 | 0.801 | | Cheval Grand | 43 | 13 | 0.998 | 1 | 0.995 | 0.783 | | Twin Turbo | 120 | 13 | 0.982 | 1 | 0.995 | 0.842 | | Daiichi Ruby | 57 | 5 | 0.963 | 1 | 0.995 | 0.949 | | Darley Arabian | 48 | 2 | 1 | 0.837 | 0.995 | 0.819 | | Daring Tact | 62 | 5 | 0.997 | 1 | 0.995 | 0.841 | | Daitaku Helios | 100 | 11 | 1 | 0.903 | 0.961 | 0.787 | | Daiwa Scarlet | 114 | 19 | 0.987 | 1 | 0.995 | 0.707 | | El Condor Pasa | 65 | 6 | 0.951 | 1 | 0.995 | 0.808 | | Eishin Flash | 39 | 5 | 0.853 | 1 | 0.995 | 0.927 | | Fuji Kiseki | 48 | 6 | 1 | 0.875 | 0.995 | 0.88 | | Fine Motion | 55 | 7 | 0.989 | 0.875 | 0.906 | 0.71 | | Gold City | 49 | 8 | 0.942 | 0.938 | 0.991 | 0.81 | | Gold Ship | 146 | 16 | 0.858 | 1 | 0.995 | 0.895 | | Godolphin Barb | 44 | 2 | 0.84 | 0.833 | 0.851 | 0.659 | | Grass Wonder | 74 | 6 | 1 | 0.797 | 0.995 | 0.792 | | Hishi Akebono | 39 | 4 | 0.989 | 1 | 0.995 | 0.766 | | Hishi Amazon | 46 | 6 | 0.993 | 1 | 0.995 | 0.835 | | Hayakawa Tazuna | 34 | 5 | 1 | 0.659 | 0.922 | 0.638 | | Hishi Miracle | 52 | 6 | 0.971 | 0.75 | 0.945 | 0.769 | | Happy Meek | 51 | 4 | 1 | 0.787 | 0.938 | 0.808 | | Hokko Tarumae | 50 | 9 | 1 | 0.678 | 0.995 | 0.76 | | Haru Urara | 69 | 9 | 0.986 | 0.917 | 0.989 | 0.747 | | Ikuno Dictus | 96 | 12 | 0.873 | 1 | 0.995 | 0.858 | | Ines Fujin | 41 | 7 | 0.947 | 1 | 0.995 | 0.898 | | Inari One | 46 | 2 | 0.856 | 1 | 0.995 | 0.656 | | Jungle Pocket | 53 | 6 | 1 | 0.85 | 0.995 | 0.747 | | King Halo | 77 | 6 | 0.975 | 1 | 0.995 | 0.773 | | Kashimoto Riko | 34 | 3 | 1 | 0.778 | 0.995 | 0.823 | | Kiryuin Aoi | 44 | 4 | 0.997 | 0.895 | 0.929 | 0.712 | | Kitasan Black | 116 | 19 | 0.974 | 1 | 0.995 | 0.909 | | K.S.Miracle | 48 | 3 | 0.982 | 1 | 0.995 | 0.852 | | Katsuragi Ace | 43 | 4 | 0.989 | 1 | 0.995 | 0.881 | | Kawakami Princess | 50 | 7 | 0.975 | 1 | 0.995 | 0.841 | | Little Cocon | 51 | 3 | 1 | 0.567 | 0.995 | 0.796 | | Light Hello | 25 | 2 | 0.993 | 1 | 0.995 | 0.788 | | Mr. C.B. | 91 | 13 | 1 | 0.659 | 0.995 | 0.703 | | Meisho Doto | 59 | 7 | 0.988 | 1 | 0.995 | 0.782 | | Mihono Bourbon | 84 | 13 | 1 | 0.955 | 0.994 | 0.779 | | Manhattan Cafe | 144 | 32 | 0.876 | 0.884 | 0.967 | 0.797 | | Mejiro Ardan | 58 | 8 | 0.985 | 0.833 | 0.869 | 0.723 | | Mejiro Bright | 55 | 6 | 0.987 | 1 | 0.995 | 0.813 | | Mejiro Dober | 56 | 5 | 0.981 | 0.933 | 0.972 | 0.785 | | Mejiro McQueen | 272 | 30 | 0.98 | 1 | 0.995 | 0.873 | | Mejiro Ryan | 43 | 7 | 0.998 | 1 | 0.995 | 0.849 | | Matikanefukukitaru | 52 | 7 | 1 | 0.952 | 0.995 | 0.719 | | Matikanetannhauser | 87 | 13 | 0.996 | 1 | 0.995 | 0.81 | | Mejiro Palmer | 95 | 11 | 0.893 | 1 | 0.929 | 0.822 | | Mejiro Ramonu | 52 | 9 | 0.993 | 1 | 0.995 | 0.748 | | Maruzensky | 43 | 7 | 0.984 | 1 | 0.995 | 0.684 | | Marvelous Sunday | 40 | 6 | 1 | 0.702 | 0.995 | 0.668 | | Nakayama Festa | 47 | 7 | 0.992 | 1 | 0.995 | 0.829 | | Nice Nature | 96 | 8 | 0.993 | 1 | 0.995 | 0.723 | | Narita Brian | 86 | 13 | 0.827 | 1 | 0.962 | 0.778 | | Narita Taishin | 55 | 5 | 0.899 | 0.857 | 0.978 | 0.938 | | Nishino Flower | 48 | 7 | 0.97 | 1 | 0.995 | 0.72 | | Narita Top Road | 50 | 9 | 0.988 | 1 | 0.995 | 0.834 | | Oguri Cap | 94 | 10 | 0.997 | 0.92 | 0.945 | 0.744 | | Rice Shower | 165 | 25 | 0.992 | 1 | 0.995 | 0.89 | | Sakura Bakushin O | 55 | 7 | 1 | 0.949 | 0.995 | 0.795 | | Symboli Rudolf | 157 | 17 | 0.987 | 0.889 | 0.975 | 0.748 | | Sakura Chiyono O | 48 | 9 | 0.946 | 0.8 | 0.941 | 0.835 | | Seiun Sky | 72 | 10 | 0.98 | 1 | 0.995 | 0.842 | | Sakura Laurel | 44 | 6 | 0.944 | 1 | 0.995 | 0.895 | | Shinko Windy | 46 | 1 | 0.96 | 1 | 0.995 | 0.949 | | Seeking the Pearl | 34 | 2 | 0.985 | 1 | 0.995 | 0.844 | | Symboli Kris S | 68 | 6 | 0.87 | 0.958 | 0.943 | 0.728 | | Smart Falcon | 53 | 7 | 0.976 | 1 | 0.995 | 0.876 | | Super Creek | 48 | 4 | 1 | 0.959 | 0.995 | 0.736 | | Special Week | 147 | 14 | 1 | 0.975 | 0.995 | 0.777 | | Silence Suzuka | 129 | 18 | 0.993 | 1 | 0.995 | 0.84 | | Sirius Symboli | 60 | 9 | 0.962 | 1 | 0.995 | 0.849 | | Satono Crown | 47 | 2 | 0.993 | 0.75 | 0.925 | 0.746 | | Satono Diamond | 79 | 12 | 0.98 | 0.75 | 0.775 | 0.649 | | Sweep Tosho | 42 | 4 | 0.951 | 1 | 0.995 | 0.895 | | Tap Dance City | 49 | 4 | 0.995 | 1 | 0.995 | 0.832 | | Taiki Shuttle | 50 | 7 | 0.883 | 1 | 0.939 | 0.756 | | Tokai Teio | 239 | 23 | 0.994 | 1 | 0.995 | 0.56 | | Tamamo Cross | 59 | 6 | 1 | 0.86 | 0.99 | 0.748 | | T.M. Opera O | 85 | 13 | 0.986 | 1 | 0.995 | 0.838 | | Tanino Gimlet | 52 | 6 | 0.986 | 1 | 0.995 | 0.771 | | Mayano Top Gun | 70 | 5 | 1 | 0.824 | 0.995 | 0.787 | | Tosen Jordan | 68 | 9 | 0.959 | 1 | 0.995 | 0.801 | | Tsurumaru Tsuyoshi | 38 | 2 | 0.984 | 1 | 0.995 | 0.736 | | Neo Universe | 47 | 5 | 1 | 0.806 | 0.945 | 0.753 | | Vodka | 110 | 15 | 0.954 | 1 | 0.995 | 0.895 | | Wonder Acute | 53 | 1 | 0.976 | 0.8 | 0.962 | 0.877 | | Winning Ticket | 47 | 5 | 0.997 | 1 | 0.995 | 0.889 | | Yukino Bijin | 44 | 7 | 1 | 0.965 | 0.995 | 0.904 | | Yaeno Muteki | 39 | 5 | 0.975 | 1 | 0.995 | 0.932 | | Yamanin Zephyr | 42 | 3 | 0.976 | 0.714 | 0.96 | 0.747 | | Zenno Rob Roy | 51 | 7 | 0.958 | 1 | 0.995 | 0.895 | | Furioso | 15 | 0 | 0.938 | 1 | 0.995 | 0.995 | | Transcend | 40 | 2 | 0.964 | 1 | 0.995 | 0.796 | | Espoir City | 30 | 1 | 0.939 | 1 | 0.995 | 0.895 | | North Flight | 40 | 2 | 0.946 | 1 | 0.995 | 0.597 | | Dantsu Flame | 30 | 1 | 0.878 | 1 | 0.995 | 0.895 | | No Reason | 26 | 0 | 0.961 | 0.667 | 0.699 | 0.53 | | Still in Love | 28 | 1 | 0.961 | 1 | 0.995 | 0.895 | | Samson Big | 25 | 1 | 0.891 | 1 | 0.995 | 0.697 | | Sounds of Earth | 53 | 3 | 0.972 | 1 | 0.995 | 0.857 | | Royce and Royce | 30 | 2 | 0.942 | 1 | 0.995 | 0.398 | | Duramente | 43 | 1 | 0.939 | 1 | 0.995 | 0.895 | | Rhein Kraft | 31 | 3 | 0.975 | 1 | 0.995 | 0.799 | | Cesario | 37 | 1 | 0.947 | 1 | 0.995 | 0.796 | | Air Messiah | 23 | 1 | 0.964 | 1 | 0.995 | 0.927 | | Daring Heart | 28 | 0 | 0.961 | 1 | 0.995 | 0.858 | | Orfevre | 25 | 3 | 0.947 | 1 | 0.995 | 0.995 | | Gentildonna | 40 | 1 | 0.944 | 1 | 0.995 | 0.597 | | Win Variation | 21 | 2 | 0.94 | 1 | 0.995 | 0.895 | | Venus Paques | 37 | 2 | 0.935 | 1 | 0.995 | 0.796 | | Rigantona | 28 | 1 | 0.995 | 1 | 0.995 | 0.91 | | Sonon Elfie | 29 | 1 | 0.994 | 1 | 0.995 | 0.815 |