|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
MODEL_NAME = "UUFO-Aigis/Pico-OpenLAiNN-25M" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) |
|
|
|
def generate_text(prompt, model, tokenizer, max_length=512, temperature=1, top_k=50, top_p=0.95): |
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
|
|
outputs = model.generate( |
|
inputs, |
|
max_length=max_length, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
do_sample=True |
|
) |
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
def main(): |
|
|
|
prompt = "According to all known laws of aviation, there is no way a bee should be able to fly." |
|
|
|
generated_text = generate_text(prompt, model, tokenizer) |
|
|
|
print(generated_text) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|