# Planck-OpenLAiNN-10M-GGUF 🤗 Hey there fellow researchers, developers, and AI enthusiasts! Today I'm releasing a new family of Models, Planck LAiNN, These are probably some of the smallest LLMs that are on HF. They aren't super useful but it was a fun expierment!~ These are the GGUF quants of the models. For the original models, you can find them [here](https://huggingface.co./UUFO-Aigis/Planck-OpenLAiNN-10M). ## Models Overview - **Panck-OpenLAiNN-10M**: A Truely Tiny model with just 10 Million parameters, this is probably boarderline useless, but it *IS* functional. - **Panck-OpenLAiNN-25M**: The second smallest model, 25 million parameters, it's not that much better. - **Panck-OpenLAiNN-50M**: Surprisingly smart, it's 50 Million parameters and could potentially maybe, Possibly even be useful ;) - **Panck-OpenLAiNN-75M**: The current *""heavy""* weight of the Plank-OpenLAiNN Models. ## Pretraining Details Plank-OpenLAiNN was trained on 32B tokens of the Fineweb dataset, it's the same one that was used for the Pico-LAiNN family of models. The model was pretrained with a context length of 1024 tokens. ## Other information: - **Compatibility**: Built to be compatible with existing projects that use LLAMA 2's tokenizer and architecture. - **Ease of Use**: No need to reinvent the wheel. These models are ready to be plugged into your applications. - **Open Source**: Fully open source, so you can tweak, tune, and twist them to your heart's content. # Benchy | Tasks | Value | |Stderr| |--------------|------:|---|-----:| |arc_challenge | 0.1766|± |0.0111| |arc_easy | 0.3144|± |0.0095| |boolq | 0.5847|± |0.0086| |hellaswag | 0.2622|± |0.0044| |lambada_openai| 0.0047|± |0.0009| # Yes, really |piqa | 0.5718|± |0.0115| |winogrande | 0.4957|± |0.0141| ## Future Plans - **More Models**: I'm currenetly training the bigger siblings of Pico-OpenLAiNN, including a 1B parameter version and beyond. 2-4 Billion parameter versions are planned. These will be Released as OpenLAiNN. - **New architecture**: This is still up in the air and I'm still developing it, things are going well and I'll post updates. - **Paper**: A detailed paper or training data will be posted at some point. ## Credit Where Credit's Due If you find these models useful and decide to use these models, a link to this repository would be highly appreciated. I am a one man show running this and I'm doing this for free, Thanks 🤗 ## Contact If you have questions, Please reach out to me at urlsys32dll@gmail.com

U.U.F.O Research Logo